Suppr超能文献

Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators.

作者信息

Jayaraman S, Verkman A S

机构信息

Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco 94143-0521, USA.

出版信息

Biophys Chem. 2000 May 31;85(1):49-57. doi: 10.1016/s0301-4622(00)00146-0.

Abstract

Quinolinium based Cl- sensitive fluorescent indicators have been used extensively to measure intracellular Cl- activity. To define their fluorescence quenching mechanism, a series of N-methyl quinolinium derivatives were synthesized, including N-methylquinolinium (Q), 6-methylQ, 6-methoxyQ, 6-chloroQ, 3-bromoQ, 6-aminoQ and N-methylisoquinolinium. Stern-Volmer plots for quenching by Cl-, Br-, SCN-, I-, F-, OAc- and CO3(2-) from both intensity and lifetime measurements were linear. Bimolecular quenching rate constants (kq) decreased with increasing anion oxidation potentials and increased with increasing quinolinium reduction potentials. The free energy change for charge transfer (deltaG), calculated from indicator spectral and electrochemical properties, was found to correlate with log kq. These results suggest that quenching of quinolinium fluorescence in water by anions involves a charge-transfer quenching mechanism. Understanding the mechanism facilitates structure-based predictions of the anion sensitivities of quinolinium indicators to design improved Cl- indicators with tailored properties.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验