Suppr超能文献

Time-related changes of developing enamel crystals after exposure to the tissue fluid in vivo: analysis of a subcutaneously implanted rat incisor.

作者信息

Yazawa H, Takano Y, Ishikawa I

机构信息

Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.

出版信息

Arch Histol Cytol. 2000 May;63(2):169-79. doi: 10.1679/aohc.63.169.

Abstract

To investigate the effects of tissue fluid on the growth of enamel crystals, upper and lower incisors extracted from 3-week-old Wistar rats were removed of the enamel organ, implanted subcutaneously in the dorsal portion of animals from the same litter, and harvested at 72 h or 1 week after implantation. The grafts were chemically fixed with surrounding tissues and prepared for light and electron microscopy, X-ray microanalysis, or for the immunohistochemistry of amelogenin. Mineralization of implanted enamel layers was examined by contact X-ray microradiography. The immunoreactivities for 25 kD amelogenin in immature enamel decreased sequentially, starting from the surface to the deeper layers; by 1 week after implantation, no positive reactivities remained in the entire enamel layers at the stages of matrix formation and early maturation. In accordance with the loss of enamel proteins, immature enamel gained mineral density until it attained higher radio opacity than that of the adjacent dentin by 1 week. In contrast, the radio opacity of the full thickness of the enamel at early maturation remained low except for a superficial thin layer. Electron microscopy revealed no sign of growth of original enamel crystals, but showed heavy precipitation of electron-dense fine granules of calcium phosphate in all layers of the secretory enamel and the superficial layer of enamel at early maturation, which showed high radio opacity. The Ca/P ratio and electron diffraction patterns of the granular materials precipitated between intrinsic enamel crystals indicated the property of hydroxy apatite or octacalcium phosphate though a characteristic ribbon-like profile of enamel crystals was lacking. These data indicate that the enamel organ blocks exogenous mineral precipitates in growing enamel during the stage of matrix formation and plays an essential regulatory role for fine enamel crystallites to grow into large hexagonal crystals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验