Schulz T, Pleiss J, Schmid R D
Institute of Technical Biochemistry, University of Stuttgart, Germany.
Protein Sci. 2000 Jun;9(6):1053-62. doi: 10.1110/ps.9.6.1053.
The lipase from Pseudomonas cepacia represents a widely applied catalyst for highly enantioselective resolution of chiral secondary alcohols. While its stereopreference is determined predominantly by the substrate structure, stereoselectivity depends on atomic details of interactions between substrate and lipase. Thirty secondary alcohols with published E values using P. cepacia lipase in hydrolysis or esterification reactions were selected, and models of their octanoic acid esters were docked to the open conformation of P. cepacia lipase. The two enantiomers of 27 substrates bound preferentially in either of two binding modes: the fast-reacting enantiomer in a productive mode and the slow-reacting enantiomer in a nonproductive mode. Nonproductive mode of fast-reacting enantiomers was prohibited by repulsive interactions. For the slow-reacting enantiomers in the productive binding mode, the substrate pushes the active site histidine away from its proper orientation, and the distance d(H(N epsilon) - O(alc)) between the histidine side chain and the alcohol oxygen increases, d(H(N epsilon) - O(alc)) was correlated to experimentally observed enantioselectivity: in substrates for which P. cepacia lipase has high enantioselectivity (E > 100), d(H(N epsilon) - O(alc)) is >2.2 A for slow-reacting enantiomers, thus preventing efficient catalysis of this enantiomer. In substrates of low enantioselectivity (E < 20), the distance d(H(N epsilon) - O(alc)) is less than 2.0 A, and slow- and fast-reacting enantiomers are catalyzed at similar rates. For substrates of medium enantioselectivity (20 < E < 100), d(H(N epsilon) - O(alc)) is around 2.1 A. This simple model can be applied to predict enantioselectivity of P. cepacia lipase toward a broad range of secondary alcohols.
洋葱假单胞菌脂肪酶是一种广泛应用于手性仲醇高对映选择性拆分的催化剂。虽然其立体选择性主要由底物结构决定,但立体专一性取决于底物与脂肪酶之间相互作用的原子细节。我们选择了30种在水解或酯化反应中使用洋葱假单胞菌脂肪酶且已公布E值的仲醇,并将它们的辛酸酯模型对接至洋葱假单胞菌脂肪酶的开放构象。27种底物的两种对映体优先以两种结合模式之一结合:快速反应对映体以生产性模式结合,慢速反应对映体以非生产性模式结合。快速反应对映体的非生产性模式因排斥相互作用而被禁止。对于处于生产性结合模式的慢速反应对映体,底物会将活性位点组氨酸推离其正常取向,组氨酸侧链与醇氧之间的距离d(H(Nε)-O(alc))增加,d(H(Nε)-O(alc))与实验观察到的对映选择性相关:对于洋葱假单胞菌脂肪酶具有高对映选择性(E>100)的底物,慢速反应对映体的d(H(Nε)-O(alc))>2.2 Å,从而阻止该对映体的有效催化。在低对映选择性(E<20)的底物中,距离d(H(Nε)-O(alc))小于2.0 Å,慢速和快速反应对映体以相似的速率被催化。对于中等对映选择性(20<E<100)的底物,d(H(Nε)-O(alc))约为2.1 Å。这个简单的模型可用于预测洋葱假单胞菌脂肪酶对多种仲醇的对映选择性。