Holmquist M, Haeffner F, Norin T, Hult K
Department of Biochemistry and Biotechnology, Royal Institute of Technology, Stockholm, Sweden.
Protein Sci. 1996 Jan;5(1):83-8. doi: 10.1002/pro.5560050110.
Molecular modeling showed that the enantiomers of heptyl 2-methyldecanoate are productively bound to the active site of Candida rugosa lipase in quite different conformations. The fast-reacting S-enantiomer may well occupy the previously identified acyl-binding tunnel in the active site of the lipase. By contrast, the slow-reacting R-enantiomer must be bound to the active site, leaving the tunnel empty to allow the formation of two catalytically essential hydrogen bonds between His 449 of the catalytic triad and the transition state of the catalyzed reaction. This information enables us to propose a molecular mechanism explaining how long-chain aliphatic alcohols act as enantioselective inhibitors of this lipase in the resolution of 2-methyldecanoic acid. Long-chain aliphatic alcohols may coordinate to the acyl-binding tunnel of the C. rugosa lipase, thereby selectively inhibiting the turnover of the fast-reacting S-enantiomer, thus resulting in a lowered enantioselectivity in the resolution.
分子模拟表明,2-甲基癸酸庚酯的对映体以截然不同的构象有效地结合于皱褶假丝酵母脂肪酶的活性位点。反应迅速的S-对映体很可能占据了脂肪酶活性位点中先前确定的酰基结合通道。相比之下,反应缓慢的R-对映体必定结合于活性位点,使通道保持空的状态,以便在催化三联体的His 449与催化反应的过渡态之间形成两个催化必需的氢键。这些信息使我们能够提出一种分子机制,解释在2-甲基癸酸拆分过程中长链脂肪醇如何作为该脂肪酶的对映选择性抑制剂发挥作用。长链脂肪醇可能与皱褶假丝酵母脂肪酶的酰基结合通道配位,从而选择性地抑制反应迅速的S-对映体的周转,进而导致拆分过程中的对映选择性降低。