Zhou X, Lynch I J, Xia S L, Wingo C S
Laboratory of Epithelial Transport, Division of Nephrology, Hypertension, and Transplantation, Department of Medicine, University of Florida, and Nephrology Section, Veterans Affairs Medical Center, Gainesville, Florida 32608-1197, USA.
Am J Physiol Renal Physiol. 2000 Jul;279(1):F153-60. doi: 10.1152/ajprenal.2000.279.1.F153.
We studied the activation of H(+)-K(+)-ATPase by CO(2) in the renal cortical collecting duct (CCD) of K-restricted animals. Exposure of microperfused CCD to 10% CO(2) increased net total CO(2) flux (J(t CO(2))) from 4.9 +/- 2.1 to 14.7 +/- 4 pmol. mm(-1). min(-1) (P < 0. 05), and this effect was blocked by luminal application of the H(+)-K(+)-ATPase inhibitor Sch-28080. In the presence of luminal Ba, a K channel blocker, exposure to CO(2) still stimulated J(t CO(2)) from 6.0 +/- 1.0 to 16.8 +/- 2.8 pmol. mm(-1). min(-1) (P < 0.01), but peritubular application of Ba inhibited the stimulation. CO(2) substantially increased (86)Rb efflux (a K tracer marker) from 93.1 +/- 23.8 to 249 +/- 60.2 nm/s (P < 0.05). These observations suggest that during K restriction 1) the enhanced H(+)-K(+)-ATPase-mediated acidification after exposure to CO(2) is dependent on a basolateral Ba-sensitive mechanism, which is different from the response of rabbits fed a normal-K diet, where activation of the H(+)-K(+)-ATPase by exposure to CO(2) is dependent on an apical Ba-sensitive pathway; and 2) K/Rb absorption via the apical H(+)-K(+)-ATPase exits through a basolateral Ba-sensitive pathway. Together, these data are consistent with the hypothesis of cooperation between H(+)-K(+)-ATPase-mediated acidification and K exit pathways in the CCD that regulate K homeostasis.
我们研究了钾限制动物肾皮质集合管(CCD)中二氧化碳对H(+)-K(+)-ATP酶的激活作用。将微灌注的CCD暴露于10%二氧化碳中,净总二氧化碳通量(J(t CO(2)))从4.9±2.1增加至14.7±4 pmol·mm(-1)·min(-1)(P<0.05),且该效应被管腔应用H(+)-K(+)-ATP酶抑制剂Sch-28080所阻断。在存在管腔钡(一种钾通道阻滞剂)的情况下,暴露于二氧化碳仍能刺激J(t CO(2))从6.0±1.0增加至16.8±2.8 pmol·mm(-1)·min(-1)(P<0.01),但肾小管周围应用钡可抑制该刺激作用。二氧化碳使(86)铷外流(一种钾示踪标记物)从93.1±23.8显著增加至249±60.2 nm/s(P<0.05)。这些观察结果表明,在钾限制期间:1)暴露于二氧化碳后增强的H(+)-K(+)-ATP酶介导的酸化作用依赖于一种基底外侧钡敏感机制,这与喂食正常钾饮食的兔子的反应不同,在正常钾饮食的兔子中,暴露于二氧化碳对H(+)-K(+)-ATP酶的激活作用依赖于一种顶端钡敏感途径;2)通过顶端H(+)-K(+)-ATP酶的钾/铷吸收通过一种基底外侧钡敏感途径排出。总之,这些数据与CCD中H(+)-K(+)-ATP酶介导的酸化作用和调节钾稳态的钾排出途径之间存在协同作用的假说一致。