Nikodemski T
Zakładu Anestezjologii i Intensywnej Opieki Medycznej, Pomorskiej Akademii Medycznej w Szczecinie.
Ann Acad Med Stetin. 1999;45:211-26.
The aim of this study is to evaluate what pathogens are mainly responsible for infection among all hospitalised at our ITU patients, to define the influence of antibiotic use on the aetiology of nosocomial infection. The research was conducted on a six-bedded surgical ITU in a 700-bed teaching hospital from January 1995 till June 1996. In August 1995 we changed infection control protocols (more stress on: handwashing with antiseptic soaps and routine microbiological culture for early prediction of infection) and antibiotic guidelines on our ITU (third generation cephalosporins, fluoroquinolones and Vancomycin were used only as the last option and never in prevention). 1276 samples for microbiological culture were obtained in routine manner. From 60% positive cultures 1216 strains were isolated (Tab. 1) and resistance to antibiotics were defined (Tab. 3). Monthly antibiotic consumption was expressed in defined daily dose (DDD) for 1000 hospitalisation-days. DDD = (X/Y)/Z x x 1000, were: X-cumulative antibiotic consumption during analysed period (g), Y-standard daily dose (g/24 h), Z-number of hospitalisation-days during analysed period (Tab. 2). Values were expressed as the mean +/- standard error (SE). Relationships between variables were analysed using linear correlation. All data were categorised for the frequency table. Statistically significant differences were considered to exist when calculated p values were less than 0.05. There were no statistically significant differences in the number of treated patients, length of stay and mortality rate on our ITU in 18 months. 58% of isolated strains were Gram-negative bacteria especially Pseudomonas aeruginosa (22%) and Acinetobacter spp. (16%) and Proteus spp. (9%). The commonly isolated Gram-positive bacteria were Enterococcus faecalis (14%), Staphylococcus aureus (12%)--of which 90% were MRSA. In 8% of cases we have isolated Candida spp. Monthly antibiotic consumption was displayed in table 2. Trend analysis confirmed reduction in Ofloxacin, fluoroquinolones and Colistin consumption over 18 months period (Fig. 2). We observed statistically significant decrease in amount of isolated Proteus spp. strains from 70 in I'95 to 31 in II'95 (p < 0.05) and 10 in I'96 (p < 0.005). This observation was confirmed in trend analysis (Fig. 1). We have observed in analysed period improvement in activities of third generation cephalosporins and fluoroquinolones (Tab. 3). We have analysed the influence of antibiotic use on the aetiology of nosocomial infection. Table 4 shows statistically significant correlation between Acinetobacter spp., MRSA, MRSE isolates and antibiotics consumption. Crosstabulated variables analyses confirm MRSE outbreaks in periods when excessive amount of Amikacin (p < 0.05 for chi 2 test, D Somer rate 0.59, V Cramer rate 0.67), aminoglicosides (p < 0.05 for chi 2 test, D Somer rate 0.57, V Cramer rate 0.59), imipenem (p < 0.05 for chi 2 test, D Somer rate 0.44, V Cramer rate 0.60) and total antibiotics consumption were high (p < 0.005 for chi 2 test, D Somer rate 0.67, V Cramer rate 0.81) (Fig. 3). This study illustrates the influence of antimicrobial therapy on the species and the resistance of strains isolated in nosocomial infection. Restrictive antibiotics policy does not affect ITU outcome. Better strategies for antibiotic administration in the ITU setting may improve their efficacy and control the spread of nosocomial infection caused by multi-resistant organisms. Therefore, restrictive antibiotic policy would be mandatory in each hospital and department.
本研究的目的是评估在我们重症监护病房(ITU)住院的所有患者中,主要是哪些病原体导致感染,并确定抗生素使用对医院感染病因的影响。该研究于1995年1月至1996年6月在一家拥有700张床位的教学医院的一个六张床位的外科重症监护病房进行。1995年8月,我们改变了感染控制方案(更加强调:使用抗菌肥皂洗手以及进行常规微生物培养以早期预测感染)以及我们重症监护病房的抗生素使用指南(第三代头孢菌素、氟喹诺酮类药物和万古霉素仅作为最后选择,且从不用于预防)。以常规方式获取了1276份微生物培养样本。从60%的阳性培养物中分离出1216株菌株(表1),并确定了对抗生素的耐药性(表3)。每月抗生素消耗量以每1000个住院日的限定日剂量(DDD)表示。DDD =(X/Y)/Z×1000,其中:X为分析期间的累计抗生素消耗量(克),Y为标准日剂量(克/24小时),Z为分析期间的住院日数(表2)。数值以平均值±标准误差(SE)表示。使用线性相关性分析变量之间的关系。所有数据都整理成频率表。当计算出的p值小于0.05时,认为存在统计学上的显著差异。在18个月内,我们重症监护病房的治疗患者数量、住院时间和死亡率没有统计学上的显著差异。58%的分离菌株为革兰氏阴性菌,尤其是铜绿假单胞菌(22%)以及不动杆菌属(16%)和变形杆菌属(9%)。常见的革兰氏阳性菌为粪肠球菌(14%)、金黄色葡萄球菌(12%),其中90%为耐甲氧西林金黄色葡萄球菌(MRSA)。在8%的病例中分离出念珠菌属。表2显示了每月抗生素消耗量。趋势分析证实,在18个月期间氧氟沙星、氟喹诺酮类药物和黏菌素的消耗量有所减少(图2)。我们观察到分离出的变形杆菌属菌株数量从1995年1月的70株降至1995年2月的31株(p < 0.05)以及1996年1月的10株(p < 0.005),具有统计学上的显著下降。这一观察结果在趋势分析中得到证实(图1)。在分析期间,我们观察到第三代头孢菌素和氟喹诺酮类药物的活性有所改善(表3)。我们分析了抗生素使用对医院感染病因的影响。表4显示不动杆菌属、MRSA、耐甲氧西林表皮葡萄球菌(MRSE)分离株与抗生素消耗量之间存在统计学上的显著相关性。交叉变量分析证实,在阿米卡星(卡方检验p < 0.05,D索默比率0.59,V克莱默比率0.67)、氨基糖苷类药物(卡方检验p < 0.05,D索默比率0.57,V克莱默比率0.59)、亚胺培南(卡方检验p < 0.05,D索默比率0.44,V克莱默比率0.60)以及总抗生素消耗量较高时(卡方检验p < 0.005,D索默比率0.67,V克莱默比率0.81)会出现MRSE暴发(图3)。本研究阐述了抗菌治疗对医院感染中分离出的菌株种类和耐药性的影响。限制性抗生素政策不影响重症监护病房的治疗结果。在重症监护病房环境中更好的抗生素给药策略可能会提高其疗效,并控制由多重耐药菌引起的医院感染的传播。因此,每家医院和科室都应强制实施限制性抗生素政策。