Suppr超能文献

用于三维正电子发射断层显像(PET)重建的内点法

Interior-point methodology for 3-D PET reconstruction.

作者信息

Johnson C A, Seidel J, Sofer A

机构信息

Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA.

出版信息

IEEE Trans Med Imaging. 2000 Apr;19(4):271-85. doi: 10.1109/42.848179.

Abstract

Interior-point methods have been successfully applied to a wide variety of linear and nonlinear programming applications. This paper presents a class of algorithms, based on path-following interior-point methodology, for performing regularized maximum-likelihood (ML) reconstructions on three-dimensional (3-D) emission tomography data. The algorithms solve a sequence of subproblems that converge to the regularized maximum likelihood solution from the interior of the feasible region (the nonnegative orthant). We propose two methods, a primal method which updates only the primal image variables and a primal-dual method which simultaneously updates the primal variables and the Lagrange multipliers. A parallel implementation permits the interior-point methods to scale to very large reconstruction problems. Termination is based on well-defined convergence measures, namely, the Karush-Kuhn-Tucker first-order necessary conditions for optimality. We demonstrate the rapid convergence of the path-following interior-point methods using both data from a small animal scanner and Monte Carlo simulated data. The proposed methods can readily be applied to solve the regularized, weighted least squares reconstruction problem.

摘要

内点法已成功应用于各种线性和非线性规划应用中。本文提出了一类基于路径跟踪内点法的算法,用于对三维(3-D)发射断层扫描数据进行正则化最大似然(ML)重建。这些算法通过求解一系列子问题,从可行域(非负象限)内部收敛到正则化最大似然解。我们提出了两种方法,一种是仅更新原始图像变量的原始方法,另一种是同时更新原始变量和拉格朗日乘子的原始对偶方法。并行实现使内点法能够扩展到非常大的重建问题。终止基于明确的收敛度量,即最优性的Karush-Kuhn-Tucker一阶必要条件。我们使用来自小动物扫描仪的数据和蒙特卡罗模拟数据证明了路径跟踪内点法的快速收敛性。所提出的方法可以很容易地应用于求解正则化加权最小二乘重建问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验