Suppr超能文献

使用RBI-MAP算法在单光子发射计算机断层显像(SPECT)中进行快速最大熵近似

Fast maximum entropy approximation in SPECT using the RBI-MAP algorithm.

作者信息

Lalush D S, Frey E C, Tsui B M

机构信息

Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, 27599-7575, USA.

出版信息

IEEE Trans Med Imaging. 2000 Apr;19(4):286-94. doi: 10.1109/42.848180.

Abstract

In this work, we present a method for approximating constrained maximum entropy (ME) reconstructions of SPECT data with modifications to a block-iterative maximum a posteriori (MAP) algorithm. Maximum likelihood (ML)-based reconstruction algorithms require some form of noise smoothing. Constrained ME provides a more formal method of noise smoothing without requiring the user to select parameters. In the context of SPECT, constrained ME seeks the minimum-information image estimate among those whose projections are a given distance from the noisy measured data, with that distance determined by the magnitude of the Poisson noise. Images that meet the distance criterion are referred to as feasible images. We find that modeling of all principal degrading factors (attenuation, detector response, and scatter) in the reconstruction is critical because feasibility is not meaningful unless the projection model is as accurate as possible. Because the constrained ME solution is the same as a MAP solution for a particular value of the MAP weighting parameter, beta, the constrained ME solution can be found with a MAP algorithm if the correct value of beta is found. We show that the RBI-MAP algorithm, if used with a dynamic scheme for estimating beta, can approximate constrained ME solutions in 20 or fewer iterations. We compare results for various methods of achieving feasible images on a simulation of Tl-201 cardiac SPECT data. Results show that the RBI-MAP ME approximation provides images and quantitative estimates close to those from a slower algorithm that gives the true ME solution. Also, we find that the ME results have higher spatial resolution and greater high-frequency noise content than a feasibility-based stopping rule, feasibility-based low-pass filtering, and a quadratic Gibbs prior with beta selected according to the feasibility criterion. We conclude that fast ME approximation is possible using either RBI-MAP with the dynamic procedure or a feasibility-based stopping rule, and that such reconstructions may be particularly useful in applications where resolution is critical.

摘要

在这项工作中,我们提出了一种方法,通过对块迭代最大后验(MAP)算法进行修改,来近似SPECT数据的约束最大熵(ME)重建。基于最大似然(ML)的重建算法需要某种形式的噪声平滑。约束ME提供了一种更正式的噪声平滑方法,无需用户选择参数。在SPECT的背景下,约束ME在那些投影与噪声测量数据有给定距离的图像估计中寻找最小信息图像,该距离由泊松噪声的大小决定。满足距离标准的图像称为可行图像。我们发现,在重建中对所有主要退化因素(衰减、探测器响应和散射)进行建模至关重要,因为除非投影模型尽可能准确,否则可行性就没有意义。由于约束ME解与MAP加权参数β的特定值下的MAP解相同,如果找到正确的β值,就可以用MAP算法找到约束ME解。我们表明,如果将RBI-MAP算法与估计β的动态方案一起使用,可以在20次或更少的迭代中近似约束ME解。我们在Tl-201心脏SPECT数据的模拟中比较了实现可行图像的各种方法的结果。结果表明,RBI-MAP ME近似提供的图像和定量估计接近较慢算法给出的真实ME解。此外,我们发现,与基于可行性的停止规则、基于可行性的低通滤波以及根据可行性标准选择β的二次吉布斯先验相比,ME结果具有更高的空间分辨率和更大的高频噪声含量。我们得出结论,使用带有动态过程的RBI-MAP或基于可行性的停止规则都可以实现快速ME近似,并且这种重建在分辨率至关重要的应用中可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验