Suppr超能文献

一种结合上下界的内部点迭代最大似然重建算法及其在单光子发射计算机断层扫描(SPECT)透射成像中的应用

An interior point iterative maximum-likelihood reconstruction algorithm incorporating upper and lower bounds with application to SPECT transmission imaging.

作者信息

Narayanan M V, Byrne C L, King M A

机构信息

Department of Radiology, University of Massachusetts Medical School, Worcester 01655, USA.

出版信息

IEEE Trans Med Imaging. 2001 Apr;20(4):342-53. doi: 10.1109/42.921483.

Abstract

The algorithm we consider here is a block-iterative (or ordered subset) version of the interior point algorithm for transmission reconstruction. Our algorithm is an interior point method because each vector of the iterative sequence [x(k)], k = 0, 1, 2, ... satisfies the constraints a(j) < x(j)k < b(j), j = 1, ..., J. Because it is a block-iterative algorithm that reconstructs the transmission attenuation map and places constraints above and below the pixel values of the reconstructed image, we call it the BITAB method. Computer simulations using the three-dimensional mathematical cardiac and torso phantom, reveal that the BITAB algorithm in conjunction with reasonably selected prior upper and lower bounds has the potential to improve the accuracy of the reconstructed attenuation coefficients from truncated fan beam transmission projections. By suitably selecting the bounds, it is possible to restrict the over estimation of coefficients outside the fully sampled region, that results from reconstructing truncated fan beam projections with iterative transmission algorithms such as the maximum-likelihood gradient type algorithm.

摘要

我们在此考虑的算法是用于透射重建的内点算法的块迭代(或有序子集)版本。我们的算法是一种内点法,因为迭代序列[x(k)](k = 0, 1, 2, ...)的每个向量都满足约束条件a(j) < x(j)k < b(j),j = 1, ..., J。由于它是一种块迭代算法,用于重建透射衰减图并在重建图像的像素值上下设置约束,所以我们称它为BITAB方法。使用三维数学心脏和躯干模型进行的计算机模拟表明,结合合理选择的先验上下界,BITAB算法有可能提高从截断扇形束透射投影重建衰减系数的准确性。通过适当地选择边界,可以限制在完全采样区域之外系数的过度估计,这种过度估计是在用诸如最大似然梯度型算法等迭代透射算法重建截断扇形束投影时产生的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验