Merboldt K D, Finsterbusch J, Frahm J
Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
J Magn Reson. 2000 Aug;145(2):184-91. doi: 10.1006/jmre.2000.2105.
We evaluated two methods for correcting inhomogeneity-induced signal losses in magnetic resonance gradient-echo imaging that either use gradient compensation or simply acquire thin sections. The strategies were tested in the human brain in terms of achievable quality of T2*-weighted images at the level of the hippocampus and of functional activation maps of the visual cortex. Experiments were performed at 2.0 T and based on single-shot echo-planar imaging at 2. 0 x 2.0 mm(2) resolution, 4 mm section thickness, and 2.0 s temporal resolution. Gradient compensation involved a sequential 16-step variation of the refocusing lobe of the slice-selection gradient (TR/TE = 125/53 ms, flip angle 15 degrees ), whereas thin sections divided the 4-mm target plane into either four 1-mm or eight 0.5-mm interleaved multislice acquisitions (TR/TE = 2000/54 ms, flip angle 70 degrees ). Both approaches were capable of alleviating the inhomogeneity problem for structures in the base of the brain. When compared to standard 4-mm EPI, functional mapping in the visual cortex was partially compromised because of a lower signal-to-noise ratio of inhomogeneity-corrected images by either method. Relative to each other, consistently better results were obtained with the use of contiguous thin sections, in particular for a thickness of 1 mm. Multislice acquisitions of thin sections require minimal technical adjustments.
我们评估了两种用于校正磁共振梯度回波成像中由不均匀性引起的信号损失的方法,一种是使用梯度补偿,另一种是简单地采集薄层。在人类大脑中,针对海马体水平的T2*加权图像以及视觉皮层的功能激活图的可实现质量,对这些策略进行了测试。实验在2.0 T下进行,基于单次激发回波平面成像,分辨率为2.0×2.0 mm²,层厚4 mm,时间分辨率为2.0 s。梯度补偿涉及对切片选择梯度的重聚焦叶进行连续16步变化(TR/TE = 125/53 ms,翻转角15°),而薄层则将4 mm的目标平面分为四个1 mm或八个0.5 mm的交错多层采集(TR/TE = 2000/54 ms,翻转角70°)。两种方法都能够缓解脑底部结构的不均匀性问题。与标准的4 mm EPI相比,由于两种方法校正不均匀性后的图像信噪比降低,视觉皮层的功能映射受到了部分影响。相互比较而言,使用连续薄层,特别是厚度为1 mm时,始终能获得更好的结果。薄层的多层采集所需的技术调整最少。