Smith A J, van Helvoort A, van Meer G, Szabo K, Welker E, Szakacs G, Varadi A, Sarkadi B, Borst P
Division of Molecular Biology and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
J Biol Chem. 2000 Aug 4;275(31):23530-9. doi: 10.1074/jbc.M909002199.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).
人类MDR3基因是多药耐药(MDR)基因家族的成员。MDR3 P-糖蛋白是一种转运磷脂酰胆碱的跨膜蛋白。MDR1 P-糖蛋白相关转运细胞毒性药物。其过表达可使细胞对多种药物产生耐药性。迄今为止,试图证明MDR3 P-糖蛋白可导致多药耐药的尝试均未成功。在此,我们报告了几种MDR1 P-糖蛋白底物,如地高辛、紫杉醇和长春碱,通过MDR3转染细胞的极化单层的定向转运增加。其他良好的MDR1 P-糖蛋白底物,包括环孢素A和地塞米松的转运未检测到明显增加。几种MDR逆转剂和其他药物抑制了短链磷脂酰胆碱类似物和药物的MDR3 P-糖蛋白依赖性转运,表明这些化合物与MDR3 P-糖蛋白之间存在相互作用。过表达MDR3的Sf9细胞的昆虫细胞膜显示出特异性MgATP结合以及钒酸盐依赖性、N-乙基马来酰亚胺敏感的核苷酸捕获活性,通过与[α-(32)P]8-叠氮基-ATP共价结合可视化。紫杉醇、长春碱以及MDR逆转剂维拉帕米、环孢素A和PSC 833几乎消除了核苷酸捕获。我们得出结论,MDR3 P-糖蛋白可以结合并转运MDR1 P-糖蛋白底物的一个子集。对于大多数药物,MDR3 P-糖蛋白介导的转运速率较低,这解释了为什么该蛋白未被检测到参与多药耐药。然而,在应激条件下(例如在具有一个MDR3无效等位基因的怀孕杂合子中),药物与MDR3 P-糖蛋白的结合仍可能对磷脂或毒素分泌产生不利影响。