Ito T, Ikehara T, Nakagawa T, Kraus W L, Muramatsu M
Department of Biochemistry, Saitama Medical School, Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495 Japan.
Genes Dev. 2000 Aug 1;14(15):1899-907.
We have used a purified recombinant chromatin assembly system, including ACF (Acf-1 + ISWI) and NAP-1, to examine the role of histone acetylation in ATP-dependent chromatin remodeling. The binding of a transcriptional activator (Gal4-VP16) to chromatin assembled using this recombinant assembly system dramatically enhances the acetylation of nucleosomal core histones by the histone acetyltransferase p300. This effect requires both the presence of Gal4-binding sites in the template and the VP16-activation domain. Order-of-addition experiments indicate that prior activator-meditated, ATP-dependent chromatin remodeling by ACF is required for the acetylation of nucleosomal histones by p300. Thus, chromatin remodeling, which requires a transcriptional activator, ACF and ATP, is an early step in the transcriptional process that regulates subsequent core histone acetylation. Glycerol gradient sedimentation and immunoprecipitation assays demonstrate that the acetylation of histones by p300 facilitates the transfer of H2A-H2B from nucleosomes to NAP-1. The results from these biochemical experiments suggest that (1) transcriptional activators (e.g., Gal4-VP16) and chromatin remodeling complexes (e.g., ACF) induce chromatin remodeling in the absence of histone acetylation; (2) transcriptional activators recruit histone acetyltransferases (e.g., p300) to promoters after chromatin remodeling has occurred; and (3) histone acetylation is important for a step subsequent to chromatin remodeling and results in the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone such as NAP-1. Our results indicate a precise role for histone acetylation, namely to alter the structure of nucleosomes (e.g., facilitate the loss of H2A-H2B dimers) that have been remodeled previously by the action of ATP-dependent chromatin remodeling complexes. Thus, transcription from chromatin templates is ordered and sequential, with precise timing and roles for ATP-dependent chromatin remodeling, subsequent histone acetylation, and alterations in nucleosome structure.
我们使用了一种纯化的重组染色质组装系统,包括ACF(Acf-1 + ISWI)和NAP-1,来研究组蛋白乙酰化在ATP依赖的染色质重塑中的作用。转录激活因子(Gal4-VP16)与使用该重组组装系统组装的染色质结合,可显著增强组蛋白乙酰转移酶p300对核小体核心组蛋白的乙酰化作用。这种效应既需要模板中存在Gal4结合位点,也需要VP16激活域。添加顺序实验表明,p300对核小体组蛋白进行乙酰化作用之前,需要先由激活因子介导、ACF进行ATP依赖的染色质重塑。因此,需要转录激活因子、ACF和ATP的染色质重塑是转录过程中的早期步骤,它调控随后的核心组蛋白乙酰化。甘油梯度沉降和免疫沉淀分析表明,p300对组蛋白的乙酰化作用促进了H2A-H2B从核小体转移到NAP-1。这些生化实验结果表明:(1)转录激活因子(如Gal4-VP16)和染色质重塑复合物(如ACF)在没有组蛋白乙酰化的情况下诱导染色质重塑;(2)转录激活因子在染色质重塑发生后将组蛋白乙酰转移酶(如p300)招募到启动子区域;(3)组蛋白乙酰化对于染色质重塑后的一个步骤很重要,并导致组蛋白H2A-H2B二聚体从核小体转移到组蛋白伴侣蛋白如NAP-1。我们的结果表明了组蛋白乙酰化的精确作用,即改变先前已由ATP依赖的染色质重塑复合物作用而重塑的核小体结构(如促进H2A-H2B二聚体的丢失)。因此,从染色质模板进行的转录是有序且连续的,ATP依赖的染色质重塑、随后的组蛋白乙酰化以及核小体结构改变都具有精确的时间安排和作用。