Suppr超能文献

介质极化和预存场对酶促电荷转移反应活化能的影响。

Effects of medium polarization and pre-existing field on activation energy of enzymatic charge-transfer reactions.

作者信息

Krishtalik L I, Topolev V V

机构信息

A.N. Frumkin Institute of Electrochemistry, Russian Academy of Sciences, Moscow.

出版信息

Biochim Biophys Acta. 2000 Jul 20;1459(1):88-105. doi: 10.1016/s0005-2728(00)00116-x.

Abstract

The highly organized spatial structure of proteins' polar groups results in the existence of a permanent intraprotein electric field and in protein's weak dielectric response, i.e. its low dielectric constant. The first factor affects equilibrium free energy gap of a charge-transfer reaction, the second (medium polarization effect) influences both equilibrium and non-equilibrium (reorganization) energies, decreasing the latter substantially. In the framework of the rigorous 'fixed-charge-density' formalism, the medium polarization component of the reaction activation energy has been calculated, both for the activation energy of the elementary act proper, and the effective activation energy accounting for the charges' transfer from water into a low-dielectric structureless medium. In all typical cases of reactions, the energy spent for charge transfer from water into structureless 'protein' is larger than the gain in activation energy due to the protein's low reorganization energy. Therefore, the low dielectric constant of proteins is not sufficient to ensure their high catalytic activity, and an additional effect of the pre-existing intraprotein electric field, compensating for an excessive charging energy, is necessary. Only a combined action of low reorganization energy and pre-existing electric field provides proteins with their high catalytic activity. The dependence of activation energy on the globule geometry has been analyzed. It is shown that, for each reaction, an optimum set of geometric parameters exists. For five hydrolytic enzymes, the optimum globule radii have been calculated using the experimental geometry of their active sites. The calculated radii agree satisfactorily with the real sizes of these macromolecules, both by absolute and by relative values.

摘要

蛋白质极性基团高度有序的空间结构导致蛋白质内部存在一个永久性电场,并使蛋白质具有较弱的介电响应,即其介电常数较低。第一个因素影响电荷转移反应的平衡自由能差,第二个因素(介质极化效应)影响平衡能和非平衡(重组)能,使后者大幅降低。在严格的“固定电荷密度”形式体系框架内,计算了反应活化能的介质极化分量,既包括基本反应本身的活化能,也包括考虑电荷从水转移到低介电常数无结构介质中的有效活化能。在所有典型的反应案例中,电荷从水转移到无结构“蛋白质”中所花费的能量大于由于蛋白质低重组能而在活化能上的增益。因此,蛋白质的低介电常数不足以确保其高催化活性,还需要蛋白质内部预先存在的电场的额外作用来补偿过高的充电能。只有低重组能和预先存在的电场共同作用才能赋予蛋白质高催化活性。分析了活化能对球状体几何形状的依赖性。结果表明,对于每个反应,都存在一组最佳的几何参数。对于五种水解酶,利用其活性位点的实验几何结构计算了最佳球状体半径。计算出的半径在绝对值和相对值上都与这些大分子的实际大小令人满意地相符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验