Suppr超能文献

Influence of the solvent structure on the electrostatic interactions in proteins.

作者信息

Rubinstein Alexander, Sherman Simon

机构信息

Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.

出版信息

Biophys J. 2004 Sep;87(3):1544-57. doi: 10.1529/biophysj.103.038620.

Abstract

The proper estimation of the influence of the many-body dynamic solvent microstructure on a pairwise electrostatic interaction (PEI) at the protein-solvent interface is very important for solving many biophysical problems. In this work, the PEI energy was calculated for a system that models the interface between a protein and an aqueous solvent. The concept of nonlocal electrostatics for interfacial electrochemical systems was used to evaluate the contribution of a solvent orientational polarization, correlated by the network of hydrogen bonds, into the PEI energy in proteins. The analytical expression for this energy was obtained in the form of Coulomb's law with an effective distance-dependent dielectric function. The asymptotic and numerical analysis carried out for this function revealed several features of dielectric heterogeneity at the protein-solvent interface. For charges located in close proximity to this interface, the values of the dielectric function for the short-distance electrostatic interactions were found to be remarkably smaller than those determined by the classical model, in which the solvent was considered as the uniform dielectric medium of high dielectric constant. Our results have shown that taking into consideration the dynamic solvent microstructure remarkably increases the value of the PEI energy at the protein-solvent interface.

摘要

相似文献

1
Influence of the solvent structure on the electrostatic interactions in proteins.
Biophys J. 2004 Sep;87(3):1544-57. doi: 10.1529/biophysj.103.038620.
3
Explicit solvent models in protein pKa calculations.
Biophys J. 1996 Jul;71(1):138-47. doi: 10.1016/S0006-3495(96)79209-3.
5
On the calculation of electrostatic interactions in proteins.
J Mol Biol. 1985 Aug 5;184(3):503-16. doi: 10.1016/0022-2836(85)90297-9.
6
A detailed representation of electrostatic energy in prediction of sequence and pH dependence of protein stability.
Proteins. 2014 Oct;82(10):2497-511. doi: 10.1002/prot.24613. Epub 2014 Jun 9.
7
Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021915. doi: 10.1103/PhysRevE.82.021915. Epub 2010 Aug 18.
9
Bridging implicit and explicit solvent approaches for membrane electrostatics.
Biophys J. 2002 Sep;83(3):1374-9. doi: 10.1016/S0006-3495(02)73908-8.

引用本文的文献

1
Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity.
J Chem Inf Model. 2023 Nov 27;63(22):7107-7123. doi: 10.1021/acs.jcim.3c01123. Epub 2023 Nov 9.
2
Reply to Varma: Elucidation of the signal origin for label-free, free-solution interactions.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4931-2. doi: 10.1073/pnas.1609553113. Epub 2016 Jul 26.
3
Examination of the quality of various force fields and solvation models for the equilibrium simulations of GA88 and GB88.
J Mol Model. 2016 Aug;22(8):177. doi: 10.1007/s00894-016-3027-8. Epub 2016 Jul 8.
5
Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.
J Mech Behav Mater. 2013 Dec;22(5-6):169-184. doi: 10.1515/jmbm-2013-0024.
6
Implicit treatment of solvent dispersion forces in protein simulations.
J Comput Chem. 2014 Aug 15;35(22):1621-9. doi: 10.1002/jcc.23655. Epub 2014 Jun 12.
7
Effect of the Reaction Field on Molecular Forces and Torques Revealed by an Image-Charge Solvation Model.
Commun Comput Phys. 2013;13(2013):129-149. doi: 10.4208/cicp.290711.180711s.
8
Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations.
SIAM Rev Soc Ind Appl Math. 2011 Nov 7;53(4):683-720. doi: 10.1137/090774288.
9
Image Charge Methods for a Three-Dielectric-Layer Hybrid Solvation Model of Biomolecules.
Commun Comput Phys. 2009 Nov;6(5):955-977. doi: 10.4208/cicp.2009.v6.p955.
10
Dynamic properties of pH-dependent structural organization of the amyloidogenic beta-protein (1-40).
Prion. 2009 Jan-Mar;3(1):31-43. doi: 10.4161/pri.3.1.8388. Epub 2009 Jan 10.

本文引用的文献

4
Electrostatics in protein binding and function.
Curr Protein Pept Sci. 2002 Dec;3(6):601-14. doi: 10.2174/1389203023380431.
5
Close-range electrostatic interactions in proteins.
Chembiochem. 2002 Jul 2;3(7):604-17. doi: 10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X.
6
Relationship between ion pair geometries and electrostatic strengths in proteins.
Biophys J. 2002 Sep;83(3):1595-612. doi: 10.1016/S0006-3495(02)73929-5.
8
Accurate representation of B-DNA double helical structure with implicit solvent and counterions.
Biophys J. 2002 Jul;83(1):382-406. doi: 10.1016/S0006-3495(02)75177-1.
10
Electrostatics in protein-protein docking.
Protein Sci. 2002 Mar;11(3):571-87. doi: 10.1110/ps.26002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验