Tan W Y, Ye Z
Department of Mathematical Sciences, The University of Memphis, 335 Winfield Dunn, Memphis, TN 38152, USA.
Math Biosci. 2000 Sep;167(1):31-50. doi: 10.1016/s0025-5564(00)00023-7.
By using the state space model (Kalman filter model) of the HIV epidemic, in this paper we have developed a general Bayesian procedure to estimate simultaneously the HIV infection distribution, the HIV incubation distribution, the numbers of susceptible people, infective people and AIDS cases. The basic approach is to use the Gibbs sampling method combined with the weighted bootstrap method. We have applied this method to the San Francisco AIDS incidence data from January 1981 to December 1992. The results show clearly that both the probability density function of the HIV infection and the probability density function of the HIV incubation are curves with two peaks. The results of the HIV infection distribution are clearly consistent with the finding by Tan et al. [W.Y. Tan, S.C. Tang, S.R. Lee, Estimation of HIV seroconversion and effects of age in San Francisco homosexual populations, J. Appl. Stat. 25 (1998) 85]. The results of HIV incubation distribution seem to confirm the staged model used by Satten and Longini [G. Satten, I. Longini, Markov chain with measurement error: estimating the 'true' course of marker of the progression of human immunodeficiency virus disease, Appl. Stat. 45 (1996) 275].