Bach M, Meigen T
Elektrophysiologisches Labor, Universitäts Augenklinik, Freiburg, Germany.
Doc Ophthalmol. 1999;99(1):69-82. doi: 10.1023/a:1002648202420.
Fourier analysis is a powerful tool in signal analysis that can be very fruitfully applied to steady-state evoked potentials (flicker ERG, pattern ERG, VEP, etc.). However, there are some inherent assumptions in the underlying discrete Fourier transform (DFT) that are not necessarily fulfilled in typical electrophysiological recording and analysis conditions. Furthermore, engineering software-packages may be ill-suited and/or may not fully exploit the information of steady-state recordings. Specifically: * In the case of steady-state stimulation we know more about the stimulus than in standard textbook situations (exact frequency, phase stability), so 'windowing' and calculation of the 'periodogram' are not necessary. * It is mandatory to choose an integer relationship between sampling rate and frame rate when employing a raster-based CRT stimulator. * The analysis interval must comprise an exact integer number (e.g., 10) of stimulus periods. * The choice of the number of stimulus periods per analysis interval needs a wise compromise: A high number increases the frequency resolution, but makes artifact removal difficult; a low number 'spills' noise into the response frequency. * There is no need to feel tied to a power-of-two number of data points as required by standard FFT, 'resampling' is an easy and efficient alternative. * Proper estimates of noise-corrected Fourier magnitude and statistical significance can be calculated that take into account the non-linear superposition of signal and noise. These aspects are developed in an intuitive approach with examples using both simulations and recordings. Proper use of Fourier analysis of our electrophysiological records will reduce recording time and/or increase the reliability of physiologic or pathologic interpretations.
傅里叶分析是信号分析中的一种强大工具,可非常有效地应用于稳态诱发电位(闪烁视网膜电图、图形视网膜电图、视觉诱发电位等)。然而,基础离散傅里叶变换(DFT)存在一些固有假设,在典型的电生理记录和分析条件下不一定能满足。此外,工程软件包可能不合适和/或可能无法充分利用稳态记录的信息。具体而言:* 在稳态刺激的情况下,我们对刺激的了解比标准教科书中的情况更多(精确频率、相位稳定性),因此“加窗”和“周期图”的计算是不必要的。* 使用基于光栅的阴极射线管刺激器时,采样率和帧率之间必须选择整数关系。* 分析间隔必须包含精确的整数个(例如10个)刺激周期。* 每个分析间隔中刺激周期数的选择需要明智地权衡:数量多会提高频率分辨率,但会使伪迹去除变得困难;数量少会将噪声“泄漏”到响应频率中。* 无需像标准快速傅里叶变换(FFT)要求的那样受限于2的幂次方的数据点数,“重采样”是一种简单有效的替代方法。* 可以计算出考虑信号和噪声非线性叠加的经噪声校正的傅里叶幅度和统计显著性的适当估计值。这些方面通过使用模拟和记录的示例以直观的方式展开。正确使用我们电生理记录的傅里叶分析将减少记录时间和/或提高生理或病理解释的可靠性。