Suppr超能文献

具有泊松分布突触输入的积分发放神经元的峰间期计算。

Calculation of interspike intervals for integrate-and-fire neurons with poisson distribution of synaptic inputs.

作者信息

Burkitt A N, Clark G M

机构信息

Bionic Ear Institute, East Melbourne, Victoria 3002, Australia.

出版信息

Neural Comput. 2000 Aug;12(8):1789-820. doi: 10.1162/089976600300015141.

Abstract

We present a new technique for calculating the interspike intervals of integrate-and-fire neurons. There are two new components to this technique. First, the probability density of the summed potential is calculated by integrating over the distribution of arrival times of the afferent post-synaptic potentials (PSPs), rather than using conventional stochastic differential equation techniques. A general formulation of this technique is given in terms of the probability distribution of the inputs and the time course of the postsynaptic response. The expressions are evaluated in the gaussian approximation, which gives results that become more accurate for large numbers of small-amplitude PSPs. Second, the probability density of output spikes, which are generated when the potential reaches threshold, is given in terms of an integral involving a conditional probability density. This expression is a generalization of the renewal equation, but it holds for both leaky neurons and situations in which there is no time-translational invariance. The conditional probability density of the potential is calculated using the same technique of integrating over the distribution of arrival times of the afferent PSPs. For inputs with a Poisson distribution, the known analytic solutions for both the perfect integrator model and the Stein model (which incorporates membrane potential leakage) in the diffusion limit are obtained. The interspike interval distribution may also be calculated numerically for models that incorporate both membrane potential leakage and a finite rise time of the postsynaptic response. Plots of the relationship between input and output firing rates, as well as the coefficient of variation, are given, and inputs with varying rates and amplitudes, including inhibitory inputs, are analyzed. The results indicate that neurons functioning near their critical threshold, where the inputs are just sufficient to cause firing, display a large variability in their spike timings.

摘要

我们提出了一种计算积分发放神经元峰峰间隔的新技术。该技术有两个新组件。首先,通过对传入突触后电位(PSP)到达时间的分布进行积分来计算总和电位的概率密度,而不是使用传统的随机微分方程技术。根据输入的概率分布和突触后响应的时间过程给出了该技术的一般公式。这些表达式在高斯近似中进行评估,对于大量小幅度的PSP,其结果会变得更准确。其次,当电位达到阈值时产生的输出尖峰的概率密度,是根据一个涉及条件概率密度的积分给出的。这个表达式是更新方程的推广,但它适用于漏电神经元和不存在时间平移不变性的情况。电位的条件概率密度使用与对传入PSP到达时间分布进行积分相同的技术来计算。对于具有泊松分布的输入,在扩散极限下获得了完美积分器模型和斯坦模型(包含膜电位泄漏)的已知解析解。对于同时包含膜电位泄漏和突触后响应有限上升时间的模型,也可以通过数值计算峰峰间隔分布。给出了输入与输出发放率之间关系以及变异系数的图,并分析了具有不同发放率和幅度的输入,包括抑制性输入。结果表明,在其临界阈值附近起作用的神经元,即输入刚好足以引发放电的情况下,其尖峰时间显示出很大的变异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验