Jung Y S, Bonagura C A, Tilley G J, Gao-Sheridan H S, Armstrong F A, Stout C D, Burgess B K
Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
J Biol Chem. 2000 Nov 24;275(47):36974-83. doi: 10.1074/jbc.M004947200.
All naturally occurring ferredoxins that have Cys-X-X-Asp-X-X-Cys motifs contain 4Fe-4S clusters that can be easily and reversibly converted to 3Fe-4S clusters. In contrast, ferredoxins with unmodified Cys-X-X-Cys-X-X-Cys motifs assemble 4Fe-4S clusters that cannot be easily interconverted with 3Fe-4S clusters. In this study we changed the central cysteine of the Cys(39)-X-X-Cys(42)-X-X-Cys(45) of Azotobacter vinelandii FdI, which coordinates its 4Fe-4S cluster, into an aspartate. UV-visible, EPR, and CD spectroscopies, metal analysis, and x-ray crystallography show that, like native FdI, aerobically purified C42D FdI is a seven-iron protein retaining its 4Fe-4S cluster with monodentate aspartate ligation to one iron. Unlike known clusters of this type the reduced 4Fe-4S cluster of C42D FdI exhibits only an S = 1/2 EPR with no higher spin signals detected. The cluster shows only a minor change in reduction potential relative to the native protein. All attempts to convert the cluster to a 3Fe cluster using conventional methods of oxygen or ferricyanide oxidation or thiol exchange were not successful. The cluster conversion was ultimately accomplished using a new electrochemical method. Hydrophobic and electrostatic interaction and the lack of Gly residues adjacent to the Asp ligand explain the remarkable stability of this cluster.
所有具有Cys-X-X-Asp-X-X-Cys基序的天然存在的铁氧化还原蛋白都含有4Fe-4S簇,这些簇可以轻松且可逆地转化为3Fe-4S簇。相比之下,具有未修饰的Cys-X-X-Cys-X-X-Cys基序的铁氧化还原蛋白组装的4Fe-4S簇不易与3Fe-4S簇相互转化。在本研究中,我们将维涅兰德固氮菌铁氧化还原蛋白I(Azotobacter vinelandii FdI)的Cys(39)-X-X-Cys(42)-X-X-Cys(45)基序的中心半胱氨酸(其与4Fe-4S簇配位)替换为天冬氨酸。紫外可见光谱、电子顺磁共振光谱和圆二色光谱、金属分析以及X射线晶体学表明,与天然FdI一样,经好氧纯化的C42D FdI是一种七铁蛋白,保留其4Fe-4S簇,天冬氨酸以单齿方式与一个铁配位。与这种类型的已知簇不同,C42D FdI的还原型4Fe-4S簇仅表现出S = 1/2的电子顺磁共振信号,未检测到更高自旋信号。相对于天然蛋白,该簇的还原电位仅发生了微小变化。使用氧气或铁氰化物氧化或硫醇交换等传统方法将该簇转化为3Fe簇的所有尝试均未成功。最终使用一种新的电化学方法实现了簇的转化。疏水和静电相互作用以及天冬氨酸配体附近缺乏甘氨酸残基解释了该簇的显著稳定性。