Suppr超能文献

绿色荧光蛋白在戈登链球菌DL1中的表达及其作为物种特异性标记物在体外唾液条件生物膜中与口腔链球菌34共黏附的应用。

Expression of green fluorescent protein in Streptococcus gordonii DL1 and its use as a species-specific marker in coadhesion with Streptococcus oralis 34 in saliva-conditioned biofilms in vitro.

作者信息

Aspiras M B, Kazmerzak K M, Kolenbrander P E, McNab R, Hardegen N, Jenkinson H F

机构信息

Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Appl Environ Microbiol. 2000 Sep;66(9):4074-83. doi: 10.1128/AEM.66.9.4074-4083.2000.

Abstract

Streptococcus gordonii is one of the predominant streptococci in the biofilm ecology of the oral cavity. It interacts with other bacteria through receptor-adhesin complexes formed between cognate molecules on the surfaces of the partner cells. To study the spatial organization of S. gordonii DL1 in oral biofilms, we used green fluorescent protein (GFP) as a species-specific marker to identify S. gordonii in a two-species in vitro oral biofilm flowcell system. To drive expression of gfp, we isolated and characterized an endogenous S. gordonii promoter, PhppA, which is situated upstream of the chromosomal hppA gene encoding an oligopeptide-binding lipoprotein. A chromosomal chloramphenicol acetyltransferase (cat) gene fusion with PhppA was constructed and used to demonstrate that PhppA was highly active throughout the growth of bacteria in batch culture. A promoterless 0.8-kb gfp ('gfp) cassette was PCR amplified from pBJ169 and subcloned to replace the cat cassette downstream of the S. gordonii-derived PhppA in pMH109-HPP, generating pMA1. Subsequently, the PhppA-'gfp cassette was PCR amplified from pMA1 and subcloned into pDL277 and pVA838 to generate the Escherichia coli-S. gordonii shuttle vectors pMA2 and pMA3, respectively. Each vector was transformed into S. gordonii DL1 aerobically to ensure GFP expression. Flow cytometric analyses of aerobically grown transformant cultures were performed over a 24-h period, and results showed that GFP could be successfully expressed in S. gordonii DL1 from PhppA and that S. gordonii DL1 transformed with the PhppA-'gfp fusion plasmid stably maintained the fluorescent phenotype. Fluorescent S. gordonii DL1 transformants were used to elucidate the spatial arrangement of S. gordonii DL1 alone in biofilms or with the coadhesion partner Streptococcus oralis 34 in two-species biofilms in a saliva-conditioned in vitro flowcell system. These results show for the first time that GFP expression in oral streptococci can be used as a species-specific marker in model oral biofilms.

摘要

戈登氏链球菌是口腔生物膜生态系统中主要的链球菌之一。它通过伙伴细胞表面同源分子之间形成的受体 - 粘附素复合物与其他细菌相互作用。为了研究戈登氏链球菌DL1在口腔生物膜中的空间组织,我们使用绿色荧光蛋白(GFP)作为物种特异性标记物,在体外双物种口腔生物膜流动池系统中鉴定戈登氏链球菌。为了驱动gfp的表达,我们分离并鉴定了一个内源性戈登氏链球菌启动子PhppA,它位于编码寡肽结合脂蛋白的染色体hppA基因的上游。构建了一个与PhppA融合的染色体氯霉素乙酰转移酶(cat)基因,并用于证明PhppA在分批培养细菌的整个生长过程中具有高活性。从pBJ169中PCR扩增出无启动子的0.8 kb gfp('gfp)盒,并亚克隆以取代pMH109 - HPP中戈登氏链球菌来源的PhppA下游的cat盒,产生pMA1。随后,从pMA1中PCR扩增PhppA - 'gfp盒,并亚克隆到pDL277和pVA838中,分别产生大肠杆菌 - 戈登氏链球菌穿梭载体pMA2和pMA3。将每个载体需氧转化到戈登氏链球菌DL1中以确保GFP表达。对需氧生长的转化体培养物进行了24小时的流式细胞术分析,结果表明GFP可以从PhppA在戈登氏链球菌DL1中成功表达,并且用PhppA - 'gfp融合质粒转化的戈登氏链球菌DL1稳定地维持荧光表型。荧光戈登氏链球菌DL1转化体用于阐明在唾液预处理的体外流动池系统中,戈登氏链球菌DL1在生物膜中的单独空间排列或与共粘附伙伴口腔链球菌34在双物种生物膜中的空间排列。这些结果首次表明,口腔链球菌中的GFP表达可作为模型口腔生物膜中的物种特异性标记物。

相似文献

3
Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration.
Microbiology (Reading). 2001 May;147(Pt 5):1383-1391. doi: 10.1099/00221287-147-5-1383.
4
Autoinducer-2 influences interactions amongst pioneer colonizing streptococci in oral biofilms.
Microbiology (Reading). 2012 Jul;158(Pt 7):1783-1795. doi: 10.1099/mic.0.057182-0. Epub 2012 Apr 5.
5
6
Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition.
Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16917-22. doi: 10.1073/pnas.0407457101. Epub 2004 Nov 16.
8
Contribution of Streptococcus gordonii Hsa Adhesin to Biofilm Formation.
Jpn J Infect Dis. 2017 Jul 24;70(4):399-404. doi: 10.7883/yoken.JJID.2016.492. Epub 2016 Dec 22.

引用本文的文献

2
Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin.
J Mol Biol. 2018 Oct 19;430(21):4344-4358. doi: 10.1016/j.jmb.2018.08.027. Epub 2018 Sep 5.
3
Microbial Biofilms and Chronic Wounds.
Microorganisms. 2017 Mar 7;5(1):9. doi: 10.3390/microorganisms5010009.
4
5
Codon-optimized fluorescent mTFP and mCherry for microscopic visualization and genetic counterselection of streptococci and enterococci.
J Microbiol Methods. 2015 Sep;116:15-22. doi: 10.1016/j.mimet.2015.06.010. Epub 2015 Jun 26.
6
Probing of microbial biofilm communities for coadhesion partners.
Appl Environ Microbiol. 2014 Nov;80(21):6583-90. doi: 10.1128/AEM.01826-14. Epub 2014 Aug 8.
9
High-level fluorescence labeling of gram-positive pathogens.
PLoS One. 2011;6(6):e19822. doi: 10.1371/journal.pone.0019822. Epub 2011 Jun 22.

本文引用的文献

1
The role of exopolysaccharides in dual species biofilm development.
J Appl Microbiol. 1998 Dec;85 Suppl 1:13S-18S. doi: 10.1111/j.1365-2672.1998.tb05278.x.
2
Multicellular organization in a degradative biofilm community.
Appl Environ Microbiol. 1994 Feb;60(2):434-46. doi: 10.1128/aem.60.2.434-446.1994.
3
Oral microbial communities: biofilms, interactions, and genetic systems.
Annu Rev Microbiol. 2000;54:413-37. doi: 10.1146/annurev.micro.54.1.413.
4
Flowcell culture of Porphyromonas gingivalis biofilms under anaerobic conditions.
J Microbiol Methods. 2000 May;40(3):233-9. doi: 10.1016/s0167-7012(00)00126-3.
6
Spatial organization of oral bacteria in biofilms.
Methods Enzymol. 1999;310:322-32. doi: 10.1016/s0076-6879(99)10026-0.
7
Molecular tools for study of biofilm physiology.
Methods Enzymol. 1999;310:20-42. doi: 10.1016/s0076-6879(99)10004-1.
8
Applications of the green fluorescent protein as a molecular marker in environmental microorganisms.
J Microbiol Methods. 1999 Apr;35(3):187-99. doi: 10.1016/s0167-7012(99)00024-x.
9
Flow cytometry and bacterial pathogenesis.
Curr Opin Microbiol. 1998 Jun;1(3):359-63. doi: 10.1016/s1369-5274(98)80042-8.
10
The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10751-6. doi: 10.1073/pnas.95.18.10751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验