Doré S, Goto S, Sampei K, Blackshaw S, Hester L D, Ingi T, Sawa A, Traystman R J, Koehler R C, Snyder S H
Department of Neuroscience, The Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, MD, Baltimore 21205, USA.
Neuroscience. 2000;99(4):587-92. doi: 10.1016/s0306-4522(00)00216-5.
Heme oxygenase (HO) cleaves the heme ring to form biliverdin, which is rapidly reduced to bilirubin, carbon monoxide, and iron. HO1, the first form of the enzyme discovered, is an inducible protein, concentrated in tissues that are exposed to degrading red blood cells and stimulated by hemolysis and numerous other toxic perturbations to eliminate potentially toxic heme. By contrast, HO2 is constitutive and most highly concentrated in neural tissues. Carbon monoxide, formed from HO2, is a putative neurotransmitter in the brain and peripheral autonomic nervous system. HO1 regulates the efflux of potentially toxic iron from cells, as iron efflux is deficient in mice with targeted deletion of HO1 (HO1(-/-)), and transfection of HO1 facilitates iron efflux. Bilirubin appears to be a physiologic neuroprotectant. Activation of HO2 by phorbol esters, that stimulate protein kinase C to phosphorylate HO2, augments production of bilirubin which protects brain cultures from oxidative stress. Bilirubin itself in nanomolar concentrations is neuroprotective, while HO2 deletion (HO2(-/-)) leads to increased neurotoxicity in brain cultures and increased neural damage following transient cerebral ischemia in intact mice. Mechanisms whereby HO2 provides neuroprotection have not been clarified including whether protection is primarily associated with apoptotic or necrotic cell death. Moreover, the generality of neurotoxic stimuli influenced by HO2 has been unclear. We now demonstrate increased neuronal death in cerebellar granule cultures of HO2(-/-) mice with a selective augmentation of apoptotic death. We also demonstrate that HO2 transfection rescues apoptotic death. In intact mice, we show an increased incidence of apoptotic morphology in the penumbra area surrounding the infarct core in HO2(-/-) mice undergoing transient focal ischemia.
血红素加氧酶(HO)裂解血红素环形成胆绿素,胆绿素会迅速还原为胆红素、一氧化碳和铁。HO1是最早发现的该酶形式,是一种诱导性蛋白,集中在暴露于降解红细胞的组织中,并受到溶血及许多其他毒性干扰的刺激,以清除潜在有毒的血红素。相比之下,HO2是组成型的,在神经组织中浓度最高。由HO2生成的一氧化碳是大脑和外周自主神经系统中一种假定的神经递质。HO1调节细胞中潜在有毒铁的外流,因为HO1基因敲除小鼠(HO1(-/-))的铁外流存在缺陷,而转染HO1可促进铁外流。胆红素似乎是一种生理性神经保护剂。佛波酯激活HO2,刺激蛋白激酶C使HO2磷酸化,可增加胆红素的生成,从而保护脑培养物免受氧化应激。纳摩尔浓度的胆红素本身就具有神经保护作用,而敲除HO2(HO2(-/-))会导致脑培养物中的神经毒性增加,以及完整小鼠短暂性脑缺血后神经损伤增加。HO2提供神经保护的机制尚未阐明,包括保护是否主要与凋亡或坏死性细胞死亡有关。此外,受HO2影响的神经毒性刺激的普遍性也不清楚。我们现在证明,HO2(-/-)小鼠的小脑颗粒培养物中神经元死亡增加,凋亡死亡选择性增加。我们还证明,转染HO2可挽救凋亡死亡。在完整小鼠中,我们发现在经历短暂局灶性缺血的HO2(-/-)小鼠梗死核心周围的半暗带区域,凋亡形态的发生率增加。