Perman B, Anderson S, Schmidt M, Moffat K
Department of Biochemistry and Molecular Biology, The University of Chicago, IL 60637, USA.
Cell Mol Biol (Noisy-le-grand). 2000 Jul;46(5):895-913.
New techniques in fast time-resolved X-ray crystallography provide a different approach to understanding the structural basis of protein function. Two biological systems have been studied as part of the refinement of these techniques, and have actually spurred new ideas in time-resolved structural studies. The dissociation of carbon monoxide from carbon-monoxy myoglobin has earlier been investigated over a time range spanning 18 orders of magnitude (femtoseconds to hours) using spectroscopic methods. Rapid time-resolved determination of the entire myoglobin structure made it possible to determine both the position of the CO after photodissociation and the entire globin structure, over a time range from nanoseconds to milliseconds, during which the heme and globin relax and the carbon monoxide rebinds. Photoactive yellow protein, a relative newcomer to biophysical research, has a fully-reversible photocycle containing several spectrally distinct intermediates. Identifying and solving the structures of each intermediate is the initial goal in time-resolved studies on this protein and will contribute to a greater understanding of the biological process of light driven signal transduction.
快速时间分辨X射线晶体学中的新技术为理解蛋白质功能的结构基础提供了一种不同的方法。作为这些技术改进的一部分,已经对两个生物系统进行了研究,并且实际上在时间分辨结构研究中激发了新的想法。早期使用光谱方法在跨越18个数量级(飞秒到小时)的时间范围内研究了一氧化碳从一氧化碳肌红蛋白中的解离。快速时间分辨测定整个肌红蛋白结构使得在从纳秒到毫秒的时间范围内确定光解离后CO的位置和整个珠蛋白结构成为可能,在此期间血红素和珠蛋白松弛且一氧化碳重新结合。光活性黄色蛋白是生物物理研究中的一个相对新成员,具有包含几种光谱上不同中间体的完全可逆光循环。识别并解析每个中间体的结构是对该蛋白质进行时间分辨研究的初始目标,并且将有助于更深入地理解光驱动信号转导的生物学过程。