Suppr超能文献

一种用于CT骨轮廓分割的高精度算法的临床评估。

Clinical evaluation of a highly accurate algorithm for CT bone contour segmentation.

作者信息

Pernozzoli A, Burghart C, Brief J, Hassfeld S, Raczkowsky J, Mühling J, Wörn H

机构信息

Clinic of Cranio-Maxillo-Facial Surgery, University of Heidelberg.

出版信息

Stud Health Technol Inform. 2000;70:246-52.

Abstract

Planning, visualisation and intraoperative navigation in a robot assisted environment for craniofacial surgery require highly accurate methods for the segmentation of bone structures in CT data. Clinical systems are still based on time consuming interactive methods like the seed-point segmentation. Faster methods with no need for interactivity lacks in precision. In the following we will present an automatic and highly accurate algorithm for the segmentation of bone contours in CT data. It is based on an algorithm for the automatic calculation of a grey-value tissue relation model for CT and MRI data.

摘要

在机器人辅助颅面外科手术环境中进行规划、可视化和术中导航,需要用于CT数据中骨结构分割的高精度方法。临床系统仍基于耗时的交互式方法,如种子点分割。无需交互的更快方法在精度上有所欠缺。在本文中,我们将提出一种用于CT数据中骨轮廓分割的自动且高精度算法。它基于一种用于自动计算CT和MRI数据灰度值组织关系模型的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验