Ash E L, Sudmeier J L, Day R M, Vincent M, Torchilin E V, Haddad K C, Bradshaw E M, Sanford D G, Bachovchin W W
Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10371-6. doi: 10.1073/pnas.97.19.10371.
13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.
13C 选择性核磁共振结合抑制剂扰动实验表明,在静息状态下的α-裂解蛋白酶和枯草杆菌蛋白酶 BPN' 中,催化组氨酸的 C(ε)(1)H 质子在质子化时分别在 9.22 ppm 和 9.18 ppm 处共振,这超出了此类质子的正常范围,且比之前报道的场强低约 0.6 至 0.8 ppm。他们还表明,之前对α-裂解蛋白酶的归属[马克利,J. L.,内维斯,D. E.,韦斯特勒,W. M.,伊瓦涅斯,I. B.,波鲁布坎,M. A. & 贝亚德贡,M. W.(1980 年)《蛋白质化学前沿》10,31 - 61]是针对无活性或变性蛋白质的信号。线宽与 pH 值关系的模拟表明,由于咪唑 pK(a) 值较高以及质子化和中性形式之间的化学位移差异较大,真实信号比无活性衍生物的相应信号更难检测。对现有核磁共振数据的汇编和分析表明,其他丝氨酸蛋白酶的真实 C(ε)(1)H 信号同样向低场位移,过去对更高场信号的归属可能有误。这些质子共振的低场位移被证明与以组氨酸 C(ε)(1)H 作为供体的氢键一致,证实了德雷温达等人的最初假设[德雷温达,Z. S.,德雷温达,U. & 科博斯,P. M.(1994 年)《分子生物学杂志》241,83 - 93],该假设基于对丝氨酸水解酶文献 X 射线晶体结构的分析。在含有天冬氨酸 - 组氨酸 - 丝氨酸三联体的酶中,这种氢键的不变性表明其功能重要性。在此,我们提出它能够实现一种反应驱动的咪唑环翻转机制,克服了所有先前机制中固有的一个主要困境,即这些酶如何催化四面体中间体的形成和有效分解。