Suppr超能文献

流行病学回归何时应使用随机系数?

When should epidemiologic regressions use random coefficients?

作者信息

Greenland S

机构信息

Department of Epidemiology, UCLA School of Public Health 90095-1772, USA.

出版信息

Biometrics. 2000 Sep;56(3):915-21. doi: 10.1111/j.0006-341x.2000.00915.x.

Abstract

Regression models with random coefficients arise naturally in both frequentist and Bayesian approaches to estimation problems. They are becoming widely available in standard computer packages under the headings of generalized linear mixed models, hierarchical models, and multilevel models. I here argue that such models offer a more scientifically defensible framework for epidemiologic analysis than the fixed-effects models now prevalent in epidemiology. The argument invokes an antiparsimony principle attributed to L. J. Savage, which is that models should be rich enough to reflect the complexity of the relations under study. It also invokes the countervailing principle that you cannot estimate anything if you try to estimate everything (often used to justify parsimony). Regression with random coefficients offers a rational compromise between these principles as well as an alternative to analyses based on standard variable-selection algorithms and their attendant distortion of uncertainty assessments. These points are illustrated with an analysis of data on diet, nutrition, and breast cancer.

摘要

具有随机系数的回归模型在频率论和贝叶斯估计问题方法中自然出现。它们在标准计算机软件包中以广义线性混合模型、层次模型和多级模型等标题广泛可用。我在此认为,与目前流行病学中普遍使用的固定效应模型相比,此类模型为流行病学分析提供了一个更具科学合理性的框架。该论点援引了L. J. 萨维奇提出的反简约原则,即模型应足够丰富以反映所研究关系的复杂性。它还援引了与之抗衡的原则,即如果你试图估计一切,那么你什么都估计不出来(常用于证明简约性的合理性)。随机系数回归在这些原则之间提供了合理的折衷,同时也是基于标准变量选择算法及其伴随的不确定性评估失真的分析方法的替代方案。通过对饮食、营养和乳腺癌数据的分析来说明这些要点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验