Greenland Sander
Departments of Epidemiology and Statistics, University of California-Los Angeles, Los Angeles, CA 90095-1772, USA.
Int J Epidemiol. 2007 Feb;36(1):195-202. doi: 10.1093/ije/dyl289. Epub 2007 Feb 28.
This article describes extensions of the basic Bayesian methods using data priors to regression modelling, including hierarchical (multilevel) models. These methods provide an alternative to the parsimony-oriented approach of frequentist regression analysis. In particular, they replace arbitrary variable-selection criteria by prior distributions, and by doing so facilitate realistic use of imprecise but important prior information. They also allow Bayesian analyses to be conducted using standard regression packages; one need only be able to add variables and records to the data set. The methods thus facilitate the use of Bayesian solutions to problems of sparse data, multiple comparisons, subgroup analyses and study bias. Because these solutions have a frequentist interpretation as "shrinkage" (penalized) estimators, the methods can also be viewed as a means of implementing shrinkage approaches to multiparameter problems.
本文介绍了使用数据先验对回归建模(包括分层(多级)模型)的基本贝叶斯方法的扩展。这些方法为频率主义回归分析中以简约为导向的方法提供了一种替代方案。特别是,它们用先验分布取代了任意的变量选择标准,通过这样做促进了对不精确但重要的先验信息的实际使用。它们还允许使用标准回归软件包进行贝叶斯分析;只需要能够向数据集添加变量和记录即可。因此,这些方法便于使用贝叶斯方法解决稀疏数据、多重比较、亚组分析和研究偏差等问题。由于这些解决方案具有作为“收缩”(惩罚)估计量的频率主义解释,因此这些方法也可以被视为对多参数问题实施收缩方法的一种手段。