Sheridan P L, Bodner M, Lynn A, Phuong T K, DePolo N J, de la Vega D J, O'Dea J, Nguyen K, McCormack J E, Driver D A, Townsend K, Ibañez C E, Sajjadi N C, Greengard J S, Moore M D, Respess J, Chang S M, Dubensky T W, Jolly D J, Sauter S L
Chiron Corporation, Center for Gene Therapy, San Diego, California 92121, USA.
Mol Ther. 2000 Sep;2(3):262-75. doi: 10.1006/mthe.2000.0123.
For many applications, human clinical therapies using retroviral vectors still require many technological improvements in key areas of vector design and production. These improvements include higher unprocessed manufacturing titers, complement-resistant vectors, and minimized potential to generate replication-competent retrovirus (RCR). To address these issues, we have developed a panel of human packaging cell lines (PCLs) with reduced homology between retroviral vector and packaging components. These reduced-homology PCLs allowed for the use of a novel high multiplicity of transduction ("high m.o. t.") method to introduce multiple copies of provector within vector-producing cell lines (VPCLs), resulting in high-titer vector without the generation of RCR. In a distinct approach to increase vector yields, we integrated manufacturing parameters into screening strategies and clone selection for large-scale vector production. Collectively, these improvements have resulted in the development of diverse VPCLs with unprocessed titers exceeding 2 x 10(7) CFU/ml. Using this technology, human Factor VIII VPCLs yielding titers as high as 2 x 10(8) CFU/ml unprocessed supernatant were generated. These cell lines produce complement-resistant vector particles (N. J. DePolo et al., J. Virol. 73: 6708-6714, 1999) and provide the basis for an ongoing Factor VIII gene therapy clinical trial.
对于许多应用而言,使用逆转录病毒载体的人类临床治疗在载体设计和生产的关键领域仍需要许多技术改进。这些改进包括提高未加工的生产滴度、抗补体载体以及将产生具有复制能力的逆转录病毒(RCR)的可能性降至最低。为了解决这些问题,我们开发了一组人类包装细胞系(PCLs),其逆转录病毒载体与包装成分之间的同源性降低。这些低同源性的PCLs允许使用一种新型的高转导复数(“高m.o.t.”)方法在载体生产细胞系(VPCLs)中引入多个前载体拷贝,从而产生高滴度载体且不会产生RCR。在一种提高载体产量的独特方法中,我们将生产参数整合到大规模载体生产的筛选策略和克隆选择中。总体而言,这些改进促成了多种VPCLs的开发,其未加工滴度超过2×10⁷CFU/ml。利用这项技术,产生了人类凝血因子VIII VPCLs,其未加工上清液的滴度高达2×10⁸CFU/ml。这些细胞系产生抗补体载体颗粒(N.J. DePolo等人,《病毒学杂志》73: 6708 - 6714, 1999),并为正在进行的凝血因子VIII基因治疗临床试验提供了基础。