Albert A, Martínez-Ripoll M, Espinosa-Ruiz A, Yenush L, Culiáñez-Macià F A, Serrano R
Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006, Madrid, Spain.
Structure. 2000 Sep 15;8(9):961-9. doi: 10.1016/s0969-2126(00)00187-8.
The Arabidopsis thaliana HAL3 gene product encodes for an FMN-binding protein (AtHal3) that is related to plant growth and salt and osmotic tolerance. AtHal3 shows sequence homology to ScHal3, a regulatory subunit of the Saccharomyces cerevisae serine/threonine phosphatase PPz1. It has been proposed that AtHal3 and ScHal3 have similar roles in cellular physiology, as Arabidopsis transgenic plants that overexpress AtHal3 and yeast cells that overexpress ScHal3 display similar phenotypes of improved salt tolerance. The enzymatic activity of AtHal3 has not been investigated. However, the AtHal3 sequence is homologous to that of EpiD, a flavoprotein from Staphylococcus epidermidis that recognizes a peptidic substrate and subsequently catalyzes the alpha, beta-dehydrogenation of its C-terminal cysteine residue.
The X-ray structure of AtHal3 at 2 A resolution reveals that the biological unit is a trimer. Each protomer adopts an alpha/beta Rossmann fold consisting of a six-stranded parallel beta sheet flanked by two layers of alpha helices. The FMN-binding site of AtHal3 contains all the structural requirements of the flavoenzymes that catalyze dehydrogenation reactions. Comparison of the amino acid sequences of AtHal3, ScHal3 and EpiD reveals that a significant number of residues involved in trimer formation, the active site, and FMN binding are conserved. This observation suggests that ScHal3 and EpiD might also be trimers, having a similar structure and function to AtHal3.
Structural comparisons of AtHal3 with other FMN-binding proteins show that AtHal3 defines a new subgroup of this protein family that is involved in signal transduction. Analysis of the structure of AtHal3 indicates that this protein is designed to interact with another cellular component and to subsequently catalyze the alpha,beta-dehydrogenation of a peptidyl cysteine. Structural data from AtHal3, together with physiological and biochemical information from ScHal3 and EpiD, allow us to propose a model for the recognition and regulation of AtHal3/ScHal3 cellular partners.
拟南芥HAL3基因产物编码一种与植物生长以及耐盐性和耐渗透性相关的黄素单核苷酸(FMN)结合蛋白(AtHal3)。AtHal3与酿酒酵母丝氨酸/苏氨酸磷酸酶PPz1的调节亚基ScHal3具有序列同源性。有人提出AtHal3和ScHal3在细胞生理学中具有相似作用,因为过表达AtHal3的拟南芥转基因植物和过表达ScHal3的酵母细胞表现出相似的耐盐性改善表型。尚未对AtHal3的酶活性进行研究。然而,AtHal3序列与表皮葡萄球菌的一种黄素蛋白EpiD的序列同源,该黄素蛋白识别一种肽底物并随后催化其C端半胱氨酸残基的α,β-脱氢反应。
AtHal3在2埃分辨率下的X射线结构显示其生物学单元为三聚体。每个原体采用α/β罗斯曼折叠结构,由一个六链平行β折叠片层两侧各有两层α螺旋组成。AtHal3的FMN结合位点包含催化脱氢反应的黄素酶的所有结构要求。AtHal3、ScHal3和EpiD的氨基酸序列比较表明,参与三聚体形成、活性位点和FMN结合的大量残基是保守的。这一观察结果表明ScHal3和EpiD可能也是三聚体,与AtHal3具有相似的结构和功能。
AtHal3与其他FMN结合蛋白的结构比较表明,AtHal3定义了该蛋白家族中一个参与信号转导的新亚组。对AtHal3结构的分析表明,该蛋白旨在与另一种细胞成分相互作用,并随后催化肽基半胱氨酸的α,β-脱氢反应。来自AtHal3的结构数据,连同来自ScHal3和EpiD 的生理和生化信息,使我们能够提出一个AtHal3/ScHal3细胞伴侣的识别和调节模型。