Law CK, Walmsley IA, Eberly JH
Center for Quantum Information, University of Rochester, Rochester, New York 14627 and Rochester Theory Center for Optical Science and Engineering and Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
Phys Rev Lett. 2000 Jun 5;84(23):5304-7. doi: 10.1103/PhysRevLett.84.5304.
We examine the quantum structure of continuum entanglement and in the context of short-pulse down-conversion we answer the open question of how many of the uncountably many frequency modes contribute effectively to the entanglement. We derive a set of two-photon mode functions that provide an exact, discrete, and effectively finite basis for characterizing pairwise entanglement. Our analysis provides a basis for entropy control in two-photon pulses generated from down-conversion.
我们研究了连续纠缠的量子结构,并在短脉冲下转换的背景下,回答了关于不可数多个频率模式中究竟有多少对纠缠有有效贡献这个悬而未决的问题。我们推导了一组双光子模式函数,它们为表征成对纠缠提供了一个精确、离散且有效有限的基。我们的分析为下转换产生的双光子脉冲中的熵控制提供了一个基础。