Suppr超能文献

用于数字乳腺摄影的图像处理算法:一篇图文并茂的文章。

Image processing algorithms for digital mammography: a pictorial essay.

作者信息

Pisano E D, Cole E B, Hemminger B M, Yaffe M J, Aylward S R, Maidment A D, Johnston R E, Williams M B, Niklason L T, Conant E F, Fajardo L L, Kopans D B, Brown M E, Pizer S M

机构信息

Department of Radiology, University of North Carolina, Chapel Hill, NC 27514-4226, USA.

出版信息

Radiographics. 2000 Sep-Oct;20(5):1479-91. doi: 10.1148/radiographics.20.5.g00se311479.

Abstract

Digital mammography systems allow manipulation of fine differences in image contrast by means of image processing algorithms. Different display algorithms have advantages and disadvantages for the specific tasks required in breast imaging-diagnosis and screening. Manual intensity windowing can produce digital mammograms very similar to standard screen-film mammograms but is limited by its operator dependence. Histogram-based intensity windowing improves the conspicuity of the lesion edge, but there is loss of detail outside the dense parts of the image. Mixture-model intensity windowing enhances the visibility of lesion borders against the fatty background, but the mixed parenchymal densities abutting the lesion may be lost. Contrast-limited adaptive histogram equalization can also provide subtle edge information but might degrade performance in the screening setting by enhancing the visibility of nuisance information. Unsharp masking enhances the sharpness of the borders of mass lesions, but this algorithm may make even an indistinct mass appear more circumscribed. Peripheral equalization displays lesion details well and preserves the peripheral information in the surrounding breast, but there may be flattening of image contrast in the nonperipheral portions of the image. Trex processing allows visualization of both lesion detail and breast edge information but reduces image contrast.

摘要

数字乳腺摄影系统可通过图像处理算法来处理图像对比度的细微差异。对于乳腺成像诊断和筛查所需的特定任务,不同的显示算法各有优缺点。手动强度窗技术可以生成与标准屏-片乳腺摄影非常相似的数字乳腺造影片,但受操作人员依赖性的限制。基于直方图的强度窗技术可提高病变边缘的清晰度,但图像致密部分之外的细节会丢失。混合模型强度窗技术可增强病变边界在脂肪背景下的可见性,但靠近病变的混合实质密度可能会丢失。对比度受限的自适应直方图均衡化也能提供细微的边缘信息,但在筛查环境中可能会因增强干扰信息的可见性而降低性能。锐化掩膜可提高肿块病变边界的清晰度,但该算法可能会使即使不清晰的肿块看起来更具边界性。周边均衡化能很好地显示病变细节并保留乳腺周围的周边信息,但图像非周边部分的对比度可能会变平。Trex处理可同时显示病变细节和乳腺边缘信息,但会降低图像对比度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验