Suppr超能文献

底物和溶剂同位素对恶臭单加氧酶底物调节反应中活性氧物种命运的影响。

Substrate and solvent isotope effects on the fate of the active oxygen species in substrate-modulated reactions of putidamonooxin.

作者信息

Twilfer H, Sandfort G, Bernhardt F H

机构信息

Medizinische Biochemie und Molekularbiologie der Universität des Saarlandes, Homburg, Germany.

出版信息

Eur J Biochem. 2000 Oct;267(19):5926-34. doi: 10.1046/j.1432-1327.2000.01662.x.

Abstract

Using 4-methoxybenzoate monooxygenase from Pseudomonas putida, the substrate deuterium isotope effect on product formation and the solvent isotope effect on the stoichiometry of oxygen uptake, NADH oxidation, product and/or H2O2 (D2O2) formation for tight couplers, partial uncouplers, and uncouplers as substrates were measured. These studies revealed for the true, intrinsic substrate deuterium isotope effect on the oxygenation reaction a k1H/k2H ratio of < 2.0, derived from the inter- and intramolecular substrate isotope effects. This value favours a concerted oxygenation mechanism of the substrate. Deuterium substitution in a tightly coupling substrate initiated a partial uncoupling of oxygen reduction and substrate oxygenation, with release of H2O2 corresponding to 20% of the overall oxygen uptake. This H2O2 (D2O2) formation (oxidase reaction) almost completely disappeared when the oxygenase function was increased by deuterium substitution in the solvent. The electron transfer from NADH to oxygen, however, was not affected by deuterium substitution in the substrate and/or the solvent. With 4-trifluoromethylbenzoate as uncoupling substrate and D2O as solvent, a reduction (peroxidase reaction) of the active oxygen complex was initiated in consequence of its extended lifetime. These additional two electron-transfer reactions to the active oxygen complex were accompanied by a decrease of both NADH oxidation and oxygen uptake rates. These findings lead to the following conclusions: (a) under tightly coupling conditions the rate-limiting step must be the formation time and lifetime of an active transient intermediate within the ternary complex iron/peroxo/substrate, rather than an oxygenative attack on a suitable C-H bond or electron transfer from NADH to oxygen. Water is released after the monooxygenation reaction; (b) under uncoupling conditions there is competition in the detoxification of the active oxygen complex between its protonation (deuteronation), with formation of H2O2 (D2O2) and its further reduction to water. The additional two electron-transfer reactions onto the active oxygen complex then become rate limiting for the oxygen uptake rate.

摘要

利用恶臭假单胞菌的4-甲氧基苯甲酸单加氧酶,测定了底物氘同位素效应(对产物形成的影响)以及溶剂同位素效应(对紧密偶联剂、部分解偶联剂和解偶联剂作为底物时氧摄取、NADH氧化、产物和/或H2O2(D2O2)形成的化学计量关系的影响)。这些研究揭示了对于氧化反应真正的、内在的底物氘同位素效应,从分子间和分子内底物同位素效应得出的k1H/k2H比值<2.0。该值支持底物的协同氧化机制。紧密偶联底物中的氘取代引发了氧还原和底物氧化的部分解偶联,释放的H2O2相当于总氧摄取量的20%。当通过溶剂中的氘取代增加加氧酶功能时,这种H2O2(D2O2)的形成(氧化酶反应)几乎完全消失。然而,从NADH到氧的电子转移不受底物和/或溶剂中氘取代的影响。以4-三氟甲基苯甲酸作为解偶联底物且以D2O作为溶剂时,由于活性氧复合物寿命延长,引发了其还原(过氧化物酶反应)。这另外两个向活性氧复合物的电子转移反应伴随着NADH氧化速率和氧摄取速率的降低。这些发现得出以下结论:(a)在紧密偶联条件下,限速步骤必定是三元复合物铁/过氧/底物中活性瞬态中间体的形成时间和寿命,而非对合适的C-H键的氧化攻击或从NADH到氧的电子转移。单加氧反应后释放出水;(b)在解偶联条件下,活性氧复合物解毒过程中存在竞争,即其质子化(氘化)形成H2O2(D2O2)与进一步还原为水之间的竞争。然后,向活性氧复合物的另外两个电子转移反应成为氧摄取速率的限速因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验