Suppr超能文献

Activation of the Na(+)/H(+) exchanger is required for reperfusion-induced Ins(1,4,5)P(3) generation.

作者信息

Harrison S N, Du X J, Arthur J F, Woodcock E A

机构信息

Baker Medical Research Institute, Commercial Road, Prahran, Victoria, 3181, Australia.

出版信息

J Mol Cell Cardiol. 2000 Oct;32(10):1851-8. doi: 10.1006/jmcc.2000.1219.

Abstract

Post-ischemic reperfusion causes a change in inositol phosphate responses to norepinephrine from primary generation of inositol(1,4) bis phosphate (Ins(1,4)P(2)) to generation of inositol(1,4,5) tris phosphate (Ins(1,4,5)P(3)) that is required for the initiation of reperfusion arrhythmias. The current study was undertaken to investigate the role of Na(+)/H(+)exchange in facilitating this transient change in inositol phosphate response. Rat hearts were subjected to 20 min ischemia followed by 2 min reperfusion and Ins(1, 4,5)P(3)content was measured by mass analysis or by anion-exchange HPLC following [(3)H]inositol labeling. Reperfusion caused generation of [(3)H]Ins(1,4,5)P(3)(1732+/-398 to 3103+/-214, cpm/g tissue, mean+/-S.E.M., n=5, P<0.01) and the development of arrhythmias. Inhibition of Na(+)/H(+)exchange, by reperfusing at pH 6.3 or by pretreating with HOE-694 (10 n M-3 microM) or HOE-642 (3 microM) prevented the [(3)H]Ins(1,4,5)P(3)generation, without causing any suppression of norepinephrine release. Increases in Ins(1,4,5)P(3)mass were similarly reduced by inhibition of Na(+)/H(+)exchange. Thus, activation of Na(+)/H(+)exchange is required for the enhanced Ins(1,4,5)P(3)response observed under reperfusion conditions, and prevention of Ins(1,4,5)P(3)generation may be an important contributor to the anti-arrhythmic actions of inhibitors of Na(+)/H(+)exchange.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验