Suppr超能文献

变性剂与蛋白质展开时暴露的表面之间相互作用的热力学分析:利用优先相互作用系数和局部-整体结构域模型解释尿素和氯化胍的m值及其与可及表面积(ASA)变化的相关性。

Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model.

作者信息

Courtenay E S, Capp M W, Saecker R M, Record M T

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Proteins. 2000;Suppl 4:72-85. doi: 10.1002/1097-0134(2000)41:4+<72::aid-prot70>3.0.co;2-7.

Abstract

A denaturant m-value is the magnitude of the slope of a typically linear plot of the unfolding free energy change DeltaG degrees (obs) vs. molar concentration (C(3)) of denaturant. For a given protein, the guanidinium chloride (GuHCl) m-value is approximately twice as large as the urea m-value. Myers et al. (Protein Sci 1995;4:2138-2148) found that experimental m-values for protein unfolding in both urea and GuHCl are proportional to DeltaASA(corr)(max), the calculated maximum amount of protein surface exposed to water in unfolding, corrected empirically for the effects of disulfide crosslinks: (urea m-value/DeltaASA(corr)(max)) = 0.14+/-0.01 cal M(-1) A(-2) and (GuHCl m-value/DeltaASA(corr)(max)) = 0.28+/-0.03 cal M(-1) A(-2). The observed linearity of plots of DeltaG degrees (obs) vs. C(3) indicates that the difference in preferential interaction coefficients DeltaGamma(3) characterizing the interactions of these solutes with denatured and native protein surface is approximately proportional to denaturant concentration. The proportionality of m-values to DeltaASA(corr)(max) indicates that the corresponding DeltaGamma(3) are proportional to DeltaASA(corr)(max) at any specified solute concentration. Here we use the local-bulk domain model of solute partitioning in the protein solution (Courtenay et al., Biochemistry 2000;39:4455-4471) to obtain a novel quantitative interpretation of denaturant m-values. We deduce that the proportionality of m-value to DeltaASA(corr)(max) results from the proportionality of B(1)(0) (the amount of water in the local domain surrounding the protein surface exposed upon unfolding) to DeltaASA(corr)(max). We show that both the approximate proportionality of DeltaGamma(3) to denaturant concentration and the residual dependence of DeltaGamma(3)/m(3) (where m(3) is molal concentration) on denaturant concentration are quantitatively predicted by the local-bulk domain model if the molal-scale solute partition coefficient K(P) and water-solute exchange stoichiometry S(1,3) are independent of solute concentration. We obtain K(P,urea) = 1.12+/-0.01 and K(P,GuHCl) = 1.16+/-0.02 (or K(P,GuH+) congruent with 1.48), values which will be useful to characterize the effect of accumulation of those solutes on all processes in which the water-accessible area of unfolded protein surface changes. We demonstrate that the local-bulk domain analysis of an m-value plot justifies the use of linear extrapolation to estimate ( less, similar 5% error) the stability of the native protein in the absence of denaturant (DeltaG(o)(o)), with respect to a particular unfolded state. Our surface area calculations indicate that published m-values/DeltaASA ratios for unfolding of alanine-based alpha-helical oligopeptides by urea and GuHCl exceed the corresponding m-value/DeltaASA ratios for protein unfolding by approximately fourfold. We propose that this difference originates from the approximately fourfold difference (48% vs. 13%) in the contribution of polar backbone residues to DeltaASA of unfolding, a novel finding which supports the long-standing but not universally accepted hypothesis that urea and guanidinium cation interact primarily with backbone amide groups. We propose that proteins which exhibit significant deviations from the average m-value/DeltaASA ratio will be found to exhibit significant deviations from the expected amount and/or average composition of the surface exposed on unfolding.

摘要

变性剂m值是展开自由能变化量ΔG°(obs)与变性剂摩尔浓度(C(3))的典型线性图的斜率大小。对于给定的蛋白质,氯化胍(GuHCl)的m值大约是尿素m值的两倍。迈尔斯等人(《蛋白质科学》1995年;4:2138 - 2148)发现,蛋白质在尿素和GuHCl中展开的实验m值与ΔASA(corr)(max)成正比,ΔASA(corr)(max)是通过经验校正二硫键交联影响后计算出的蛋白质展开时暴露于水的最大表面积:(尿素m值/ΔASA(corr)(max)) = 0.14 ± 0.01 cal M⁻¹ Å⁻²,(GuHCl m值/ΔASA(corr)(max)) = 0.28 ± 0.03 cal M⁻¹ Å⁻²。观察到的ΔG°(obs)与C(3)的线性图表明,表征这些溶质与变性和天然蛋白质表面相互作用的优先相互作用系数ΔΓ(3)的差异大约与变性剂浓度成正比。m值与ΔASA(corr)(max)的比例关系表明,在任何指定的溶质浓度下,相应的ΔΓ(3)与ΔASA(corr)(max)成正比。在这里,我们使用蛋白质溶液中溶质分配的局部 - 整体域模型(考特尼等人,《生物化学》2000年;39:4455 - 4471)来获得对变性剂m值的新颖定量解释。我们推断,m值与ΔASA(corr)(max)的比例关系源于B(1)(₀)(展开时蛋白质表面周围局部域中的水量)与ΔASA(corr)(max)的比例关系。我们表明,如果摩尔尺度的溶质分配系数K(P)和水 - 溶质交换化学计量比S(1,3)与溶质浓度无关,局部 - 整体域模型可以定量预测ΔΓ(3)与变性剂浓度的近似比例关系以及ΔΓ(3)/m(3)(其中m(3)是质量摩尔浓度)对变性剂浓度的残余依赖性。我们得到K(P,尿素) = 1.12 ± 0.01和K(P,GuHCl) = 1.16 ± 0.02(或K(P,Gu⁺) ≈ 1.48),这些值将有助于表征这些溶质的积累对未折叠蛋白质表面水可及面积发生变化的所有过程的影响。我们证明,对m值图进行局部 - 整体域分析证明了使用线性外推法来估计(误差小于约5%)天然蛋白质在不存在变性剂时相对于特定未折叠状态的稳定性(ΔG°(o))是合理的。我们的表面积计算表明,已发表的关于基于丙氨酸的α - 螺旋寡肽在尿素和GuHCl中展开的m值/ΔASA比率比蛋白质展开的相应m值/ΔASA比率大约高出四倍。我们提出,这种差异源于极性主链残基对展开的ΔASA贡献的大约四倍差异(48%对13%),这一新颖发现支持了长期存在但未被普遍接受的假设,即尿素和胍阳离子主要与主链酰胺基团相互作用。我们提出,如果发现蛋白质的m值/ΔASA比率与平均值有显著偏差,那么它们在展开时暴露的表面预期量和/或平均组成也会有显著偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验