Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27339-27345. doi: 10.1073/pnas.2012481117. Epub 2020 Oct 21.
Folding and other protein self-assembly processes are driven by favorable interactions between O, N, and C unified atoms of the polypeptide backbone and side chains. These processes are perturbed by solutes that interact with these atoms differently than water does. Amide NH···O=C hydrogen bonding and various π-system interactions have been better characterized structurally or by simulations than experimentally in water, and unfavorable interactions are relatively uncharacterized. To address this situation, we previously quantified interactions of alkyl ureas with amide and aromatic compounds, relative to interactions with water. Analysis yielded strengths of interaction of each alkylurea with unit areas of different hybridization states of unified O, N, and C atoms of amide and aromatic compounds. Here, by osmometry, we quantify interactions of 10 pairs of amides selected to complete this dataset. An analysis yields intrinsic strengths of six favorable and four unfavorable atom-atom interactions, expressed per unit area of each atom and relative to interactions with water. The most favorable interactions are spO-spC (lone pair-π, presumably -π*), spC-spC (π-π and/or hydrophobic), spO-spN (hydrogen bonding) and spC-spC (CH-π and/or hydrophobic). Interactions of spC with itself (hydrophobic) and with spN are modestly favorable, while spN interactions with spN and with amide/aromatic spC are modestly unfavorable. Amide spO-spO interactions and spO-spC interactions are more unfavorable, indicating the preference of amide spO to interact with water. These intrinsic interaction strengths are used to predict interactions of amides with proteins and chemical effects of amides (including urea, -ethylpyrrolidone [NEP], and polyvinylpyrrolidone [PVP]) on protein stability.
折叠和其他蛋白质自组装过程是由多肽主链和侧链的 O、N 和 C 统一原子之间的有利相互作用驱动的。这些过程会受到与这些原子相互作用不同于水的溶质的干扰。酰胺 NH···O=C 氢键和各种π-系统相互作用在结构上或模拟中比在水中得到了更好的描述,而不利的相互作用则相对没有得到很好的描述。为了解决这个问题,我们之前定量了烷基脲与酰胺和芳香族化合物的相互作用,相对于与水的相互作用。分析得出了每个烷基脲与酰胺和芳香族化合物不同杂化状态的单位面积的相互作用强度。在这里,通过渗透压法,我们定量了 10 对酰胺的相互作用,这些酰胺是为了完成这个数据集而选择的。分析得出了六种有利和四种不利的原子-原子相互作用的固有强度,每单位面积的每种原子都表示,并相对于与水的相互作用。最有利的相互作用是 spO-spC(孤对-π,大概是 -π*)、spC-spC(π-π 和/或疏水性)、spO-spN(氢键)和 spC-spC(CH-π 和/或疏水性)。spC 与自身(疏水性)和与 spN 的相互作用适度有利,而 spN 与 spN 和酰胺/芳香族 spC 的相互作用适度不利。酰胺 spO-spO 相互作用和 spO-spC 相互作用更不利,表明酰胺 spO 优先与水相互作用。这些固有相互作用强度用于预测酰胺与蛋白质的相互作用以及酰胺(包括脲、-乙基吡咯烷酮[NEP]和聚乙烯吡咯烷酮[PVP])对蛋白质稳定性的化学影响。