Suppr超能文献

切断轴突末端的屏障通透性会逐渐降低,直至形成离子性封闭。

Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed.

作者信息

Eddleman C S, Bittner G D, Fishman H M

机构信息

Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA.

出版信息

Biophys J. 2000 Oct;79(4):1883-90. doi: 10.1016/S0006-3495(00)76438-1.

Abstract

After axonal severance, a barrier forms at the cut ends to rapidly restrict bulk inflow and outflow. In severed crayfish axons we used the exclusion of hydrophilic, fluorescent dye molecules of different sizes (0.6-70 kDa) and the temporal decline of ionic injury current to levels in intact axons to determine the time course (0-120 min posttransection) of barrier formation and the posttransection time at which an axolemmal ionic seal had formed, as confirmed by the recovery of resting and action potentials. Confocal images showed that the posttransection time of dye exclusion was inversely related to dye molecular size. A barrier to the smallest dye molecule formed more rapidly (<60 min) than did the barrier to ionic entry (>60 min). These data show that axolemmal sealing lacks abrupt, large changes in barrier permeability that would be expected if a seal were to form suddenly, as previously assumed. Rather, these data suggest that a barrier forms gradually and slowly by restricting the movement of molecules of progressively smaller size amid injury-induced vesicles that accumulate, interact, and form junctional complexes with each other and the axolemma at the cut end. This process eventually culminates in an axolemmal ionic seal, and is not complete until ionic injury current returns to baseline levels measured in an undamaged axon.

摘要

轴突切断后,在断端形成一个屏障,迅速限制物质的大量流入和流出。在切断的小龙虾轴突中,我们利用不同大小(0.6 - 70 kDa)的亲水性荧光染料分子的排除以及离子损伤电流随时间下降至完整轴突中的水平,来确定屏障形成的时间进程(横断后0 - 120分钟)以及轴膜离子密封形成的横断后时间,静息电位和动作电位的恢复证实了这一点。共聚焦图像显示,染料排除的横断后时间与染料分子大小呈负相关。对最小染料分子的屏障形成速度比对离子进入的屏障形成速度更快(<60分钟),而对离子进入的屏障形成速度较慢(>60分钟)。这些数据表明,轴膜密封并不像之前所假设的那样,如果密封突然形成,屏障通透性会有突然的、大幅度的变化。相反,这些数据表明,屏障是通过在损伤诱导的囊泡中逐渐限制越来越小的分子的移动而逐渐缓慢形成的,这些囊泡在断端相互聚集、相互作用并与轴膜形成连接复合体。这个过程最终导致轴膜离子密封,直到离子损伤电流恢复到在未受损轴突中测量的基线水平,这个过程才算完成。

相似文献

1
Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed.
Biophys J. 2000 Oct;79(4):1883-90. doi: 10.1016/S0006-3495(00)76438-1.
2
Anomalies associated with dye exclusion as a measure of axolemmal repair in invertebrate axons.
Neurosci Lett. 1998 Nov 13;256(3):123-6. doi: 10.1016/s0304-3940(98)00709-5.
3
Axolemmal repair requires proteins that mediate synaptic vesicle fusion.
J Neurobiol. 2000 Sep 15;44(4):382-91. doi: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q.
4
Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury.
J Neurosci. 1998 Jun 1;18(11):4029-41. doi: 10.1523/JNEUROSCI.18-11-04029.1998.
5
Calpain activity promotes the sealing of severed giant axons.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4751-6. doi: 10.1073/pnas.94.9.4751.
6
Delaminating myelin membranes help seal the cut ends of severed earthworm giant axons.
J Neurobiol. 1997 Dec;33(7):945-60. doi: 10.1002/(sici)1097-4695(199712)33:7<945::aid-neu6>3.0.co;2-8.
7
Repair of plasmalemmal lesions by vesicles.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4745-50. doi: 10.1073/pnas.94.9.4745.
8
Structural changes at cut ends of earthworm giant axons in the interval between dye barrier formation and neuritic outgrowth.
J Comp Neurol. 2000 Jan 10;416(2):143-57. doi: 10.1002/(sici)1096-9861(20000110)416:2<143::aid-cne2>3.0.co;2-3.
9
Plasmalemmal repair of severed neurites of PC12 cells requires Ca(2+) and synaptotagmin.
J Neurosci Res. 2000 Nov 15;62(4):566-73. doi: 10.1002/1097-4547(20001115)62:4<566::AID-JNR11>3.0.CO;2-4.
10
Extent and mechanism of sealing in transected giant axons of squid and earthworms.
J Neurosci. 1994 Nov;14(11 Pt 1):6638-51. doi: 10.1523/JNEUROSCI.14-11-06638.1994.

引用本文的文献

1
Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies.
Front Physiol. 2023 Mar 15;14:1114779. doi: 10.3389/fphys.2023.1114779. eCollection 2023.
2
Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip?
Front Cell Neurosci. 2020 Jul 3;14:177. doi: 10.3389/fncel.2020.00177. eCollection 2020.
5
Focused ultrasound transiently increases membrane conductance in isolated crayfish axon.
J Neurophysiol. 2019 Feb 1;121(2):480-489. doi: 10.1152/jn.00541.2018. Epub 2018 Dec 19.
6
Cellular mechanisms and signals that coordinate plasma membrane repair.
Cell Mol Life Sci. 2018 Oct;75(20):3751-3770. doi: 10.1007/s00018-018-2888-7. Epub 2018 Jul 26.
7
Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development.
Physiol Rev. 2018 Apr 1;98(2):919-1053. doi: 10.1152/physrev.00025.2017.
8
Direct Current-Induced Calcium Trafficking in Different Neuronal Preparations.
Neural Plast. 2016;2016:2823735. doi: 10.1155/2016/2823735. Epub 2016 Dec 15.
9
Repair of traumatic plasmalemmal damage to neurons and other eukaryotic cells.
Neural Regen Res. 2016 Jul;11(7):1033-42. doi: 10.4103/1673-5374.187019.
10
Membrane dynamics during cellular wound repair.
Mol Biol Cell. 2016 Jul 15;27(14):2272-85. doi: 10.1091/mbc.E16-04-0223. Epub 2016 May 25.

本文引用的文献

1
Axolemmal repair requires proteins that mediate synaptic vesicle fusion.
J Neurobiol. 2000 Sep 15;44(4):382-91. doi: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q.
2
Patching plasma membrane disruptions with cytoplasmic membrane.
J Cell Sci. 2000 Jun;113 ( Pt 11):1891-902. doi: 10.1242/jcs.113.11.1891.
3
Structural changes at cut ends of earthworm giant axons in the interval between dye barrier formation and neuritic outgrowth.
J Comp Neurol. 2000 Jan 10;416(2):143-57. doi: 10.1002/(sici)1096-9861(20000110)416:2<143::aid-cne2>3.0.co;2-3.
4
Calcium entry initiates processes that restore a barrier to dye entry in severed earthworm giant axons.
Neurosci Lett. 1999 Sep 17;272(3):147-50. doi: 10.1016/s0304-3940(99)00544-3.
5
Anomalies associated with dye exclusion as a measure of axolemmal repair in invertebrate axons.
Neurosci Lett. 1998 Nov 13;256(3):123-6. doi: 10.1016/s0304-3940(98)00709-5.
6
Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury.
J Neurosci. 1998 Jun 1;18(11):4029-41. doi: 10.1523/JNEUROSCI.18-11-04029.1998.
7
Delaminating myelin membranes help seal the cut ends of severed earthworm giant axons.
J Neurobiol. 1997 Dec;33(7):945-60. doi: 10.1002/(sici)1097-4695(199712)33:7<945::aid-neu6>3.0.co;2-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验