Suppr超能文献

鱿鱼和蚯蚓横断巨轴突的封闭程度及机制

Extent and mechanism of sealing in transected giant axons of squid and earthworms.

作者信息

Krause T L, Fishman H M, Ballinger M L, Bittner G D

机构信息

Department of Zoology, University of Texas, Austin 78712.

出版信息

J Neurosci. 1994 Nov;14(11 Pt 1):6638-51. doi: 10.1523/JNEUROSCI.14-11-06638.1994.

Abstract

Transected axons are often assumed to seal at their cut ends by the formation of continuous membrane barriers that allow for the restoration of function in the axonal stumps. We have used several electrophysiological measures (membrane potential, input resistance, injury current density) and several morphological measures (phase-contrast, video-enhanced differential interference contrast, light, and electron microscopies) of living and fixed material to assess the extent and mechanism of sealing within hours after transecting giant axons of squid (Loligo pealei and Sepioteuthis lessoniana) and earthworms (Lumbricus terrestris). Our electrophysiological data suggest that the proximal and distal ends of transected squid giant axons do not completely seal within 2.5 hr in physiological saline. In contrast, the same set of measures suggest that proximal and distal ends of transected earthworm giant axons seal within 1 hr in physiological saline. Our morphological data show that the cut ends of both squid and earthworm axons constrict, but that a 20-70-microns-diameter opening always remains at the cut end that is filled with vesicles. Axonal transection induces the formation of vesicles that are observed in the axoplasm within minutes in standard salines and that rapidly migrate to the cut ends. These injury-induced vesicles are loosely packed near the cut ends of squid giant axons, which do not functionally seal within 2.5 hr of transection. In contrast, vesicles formed a tightly packed plug at the cut ends of earthworm medial giant axons, which do functionally seal within 1 hr of transection in physiological saline. Since we detect no single continuous membrane that spans the cut end, sealing does not appear to occur by the fusion of constricted axolemmal membrane or the formation of a membranous partition at the cut end. Rather, our data are consistent with the hypothesis that a tightly packed vesicular plug is responsible for sealing of earthworm giant axons.

摘要

人们通常认为,横断的轴突会通过形成连续的膜屏障来封闭其断端,从而使轴突残端的功能得以恢复。我们运用了多种电生理测量方法(膜电位、输入电阻、损伤电流密度)以及多种形态学测量方法(相差显微镜、视频增强微分干涉对比显微镜、光学显微镜和电子显微镜),对活体和固定材料进行研究,以评估在切断鱿鱼(枪乌贼和莱氏拟乌贼)和蚯蚓(陆正蚓)的巨轴突数小时后,封闭的程度和机制。我们的电生理数据表明,在生理盐水中,切断的鱿鱼巨轴突的近端和远端在2.5小时内并未完全封闭。相比之下,同样的测量方法表明,切断的蚯蚓巨轴突的近端和远端在生理盐水中1小时内即可封闭。我们的形态学数据显示,鱿鱼和蚯蚓轴突的断端都会收缩,但断端始终会留有一个直径为20 - 70微米的开口,其中充满了囊泡。轴突横断会诱导囊泡的形成,在标准盐水中,数分钟内即可在轴质中观察到这些囊泡,并且它们会迅速迁移至断端。这些损伤诱导的囊泡在鱿鱼巨轴突断端附近松散堆积,而鱿鱼巨轴突在横断后2.5小时内并未实现功能封闭。相比之下,在蚯蚓内侧巨轴突的断端,囊泡形成了紧密堆积的塞子,在生理盐水中横断后1小时内即可实现功能封闭。由于我们未检测到跨越断端的单一连续膜,因此封闭似乎并非通过收缩的轴膜融合或在断端形成膜性分隔来实现。相反,我们的数据与这样一种假设一致,即紧密堆积的囊泡塞负责蚯蚓巨轴突的封闭。

相似文献

4
Calpain activity promotes the sealing of severed giant axons.钙蛋白酶活性促进切断的巨型轴突的封闭。
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4751-6. doi: 10.1073/pnas.94.9.4751.
7
Axolemmal repair requires proteins that mediate synaptic vesicle fusion.轴膜修复需要介导突触小泡融合的蛋白质。
J Neurobiol. 2000 Sep 15;44(4):382-91. doi: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q.

引用本文的文献

1
Engineering the Future of Restorative Clinical Peripheral Nerve Surgery.塑造修复性临床周围神经外科的未来
Adv Healthc Mater. 2025 Aug;14(20):e2404293. doi: 10.1002/adhm.202404293. Epub 2025 Apr 1.
2
Plasma membrane repair empowers the necrotic survivors as innate immune modulators.质膜修复使坏死幸存者成为先天免疫调节剂。
Semin Cell Dev Biol. 2024 Mar 15;156:93-106. doi: 10.1016/j.semcdb.2023.08.001. Epub 2023 Aug 28.
4
Enhancing membrane repair increases regeneration in a sciatic injury model.增强膜修复可增加坐骨损伤模型中的再生。
PLoS One. 2020 Apr 9;15(4):e0231194. doi: 10.1371/journal.pone.0231194. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验