Suppr超能文献

λS 孔形成蛋白二聚体和寡聚体相互作用的遗传与生化分析

Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin.

作者信息

Gründling A, Bläsi U, Young R

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.

出版信息

J Bacteriol. 2000 Nov;182(21):6082-90. doi: 10.1128/JB.182.21.6082-6090.2000.

Abstract

Bacteriophage lambda uses a holin-endolysin system for host cell lysis. R, the endolysin, has muralytic activity. S, the holin, is a small membrane protein that permeabilizes the inner membrane at a precisely scheduled time after infection and allows the endolysin access to its substrate, resulting in host cell lysis. lambda S has a single cysteine at position 51 that can be replaced by a serine without loss of the holin function. A collection of 27 single-cysteine products of alleles created from lambda S(C51S) were tested for holin function. Most of the single-cysteine variants retained the ability to support lysis. Mutations with the most defective phenotype clustered in the first two hydrophobic transmembrane domains. Several lines of evidence indicate that S forms an oligomeric structure in the inner membrane. Here we show that oligomerization does not depend on disulfide bridge formation, since the cysteineless S(C51S) (i) is functional as a holin and (ii) shows the same oligomerization pattern as the parental S protein. In contrast, the lysis-defective S(A52V) mutant dimerizes but does not form cross-linkable oligomers. Again, dimerization does not depend on the natural cysteine, since the cysteineless lysis-defective S(A52V/C51S) is found in dimers after treatment of the membrane with a cross-linking agent. Furthermore, under oxidative conditions, dimerization via the natural cysteine is very efficient for S(A52V). Both S(A52V) (dominant negative) and S(A48V) (antidominant) interact with the parental S protein, as judged by oxidative disulfide bridge formation. Thus, productive and unproductive heterodimer formation between the parental protein and the mutants S(A52V) and S(A48V), respectively, may account for the dominant and antidominant lysis phenotypes. Examination of oxidative dimer formation between S variants with single cysteines in the hydrophobic core of the second membrane-spanning domain revealed that positions 48 and 51 are on a dimer interface. These results are discussed in terms of a three-step model leading to S-dependent hole formation in the inner membrane.

摘要

噬菌体λ利用一种穿孔素-内溶素系统进行宿主细胞裂解。R是内溶素,具有溶壁活性。S是穿孔素,是一种小的膜蛋白,在感染后精确安排的时间使内膜通透性增加,让内溶素接近其底物,导致宿主细胞裂解。λ S在第51位有一个半胱氨酸,可被丝氨酸取代而不丧失穿孔素功能。对由λ S(C51S)产生的27个单半胱氨酸等位基因产物进行了穿孔素功能测试。大多数单半胱氨酸变体保留了支持裂解的能力。具有最缺陷表型的突变集中在前两个疏水跨膜结构域。几条证据表明S在内膜中形成寡聚体结构。在此我们表明寡聚化不依赖于二硫键形成,因为无半胱氨酸的S(C51S) (i)作为穿孔素起作用,并且(ii)显示出与亲本S蛋白相同的寡聚化模式。相反,裂解缺陷型S(A52V)突变体形成二聚体但不形成可交联的寡聚体。同样,二聚化不依赖于天然半胱氨酸,因为在用交联剂处理膜后,无半胱氨酸的裂解缺陷型S(A52V/C51S)以二聚体形式存在。此外,在氧化条件下,通过天然半胱氨酸的二聚化对S(A52V)非常有效。通过氧化二硫键形成判断,S(A52V)(显性负性)和S(A48V)(反显性)都与亲本S蛋白相互作用。因此,亲本蛋白与突变体S(A52V)和S(A48V)分别形成有功能和无功能的异源二聚体,可能解释了显性和反显性裂解表型。对在第二个跨膜结构域疏水核心中有单个半胱氨酸的S变体之间氧化二聚体形成的研究表明,第48位和第51位在二聚体界面上。根据导致内膜中依赖S形成孔的三步模型对这些结果进行了讨论。

相似文献

5
Spatial and temporal control of lysis by the lambda holin.λ噬菌体 holin 介导的溶菌的时空控制
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
8
Layers of evolvability in a bacteriophage life history trait.噬菌体生活史特征中的可进化性层次
Mol Biol Evol. 2009 Jun;26(6):1289-98. doi: 10.1093/molbev/msp037. Epub 2009 Mar 5.
9
Genetic dissection of T4 lysis.T4 噬菌体裂解的基因剖析
J Bacteriol. 2014 Jun;196(12):2201-9. doi: 10.1128/JB.01548-14. Epub 2014 Apr 4.

引用本文的文献

4
Phage Therapy in the Postantibiotic Era.抗药性时代的噬菌体疗法。
Clin Microbiol Rev. 2019 Jan 16;32(2). doi: 10.1128/CMR.00066-18. Print 2019 Apr.
5
Phage Lysis: Multiple Genes for Multiple Barriers.噬菌体裂解:多种基因对应多种障碍。
Adv Virus Res. 2019;103:33-70. doi: 10.1016/bs.aivir.2018.09.003. Epub 2018 Nov 28.
6
Localization and Regulation of the T1 Unimolecular Spanin.T1 单分子跨膜蛋白的定位与调节
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.00380-18. Print 2018 Nov 15.
9
Bacteriophage therapy against Enterobacteriaceae.针对肠杆菌科细菌的噬菌体疗法。
Virol Sin. 2015 Feb;30(1):11-8. doi: 10.1007/s12250-014-3543-6. Epub 2015 Feb 3.
10
Probing the structure of the S105 hole.探究S105孔的结构。
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.

本文引用的文献

4
Holins: the protein clocks of bacteriophage infections.裂解蛋白:噬菌体感染的蛋白质时钟。
Annu Rev Microbiol. 2000;54:799-825. doi: 10.1146/annurev.micro.54.1.799.
5
Phages will out: strategies of host cell lysis.噬菌体终将现身:宿主细胞裂解策略
Trends Microbiol. 2000 Mar;8(3):120-8. doi: 10.1016/s0966-842x(00)01705-4.
7
Molecular function of the dual-start motif in the lambda S holin.λ S 溶血素中双起始基序的分子功能
Mol Microbiol. 1999 Aug;33(3):569-82. doi: 10.1046/j.1365-2958.1999.01501.x.
10
Oligohistidine tag mutagenesis of the lambda holin gene.λ 溶菌蛋白基因的寡聚组氨酸标签诱变
J Bacteriol. 1998 Aug;180(16):4199-211. doi: 10.1128/JB.180.16.4199-4211.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验