Suppr超能文献

Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model.

作者信息

Wang S, Tarbell J M

机构信息

Biomolecular Transport Dynamics Laboratory, Departments of Chemical Engineering and Bioengineering, Pennsylvania State University, University Park, PA, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2000 Oct;20(10):2220-5. doi: 10.1161/01.atv.20.10.2220.

Abstract

A 3D collagen gel model was developed to simulate interstitial fluid flow and to assess the importance of this flow on the biochemical production rates of vascular smooth muscle cells (SMCs). Rat aortic SMCs were suspended in type I collagen, and the gel was supported by nylon fibers that allowed a 9-cm length of the SMC-gel model to withstand 90 cm H(2)O differential pressure over a 6-hour period without significant compaction. Up to 1 dyne/cm(2) shear stress on the suspended SMCs could be induced by the pressure-driven interstitial flow. The suspended SMCs were globular, had a diameter of approximately 10 microm, and were distributed uniformly throughout the gel. The collagen fibers formed a network that was connected randomly with the surface of SMCs and nylon fibers. The diameter of the collagen fibers was approximately 100 nm, and the concentration of collagen was 2.5 mg/mL. Using these parameters, fiber matrix theory predicted a Darcy permeability coefficient (K:(p)) of 1.22x10(-)(8) cm(2), which was close to the measured value of K:(p). The production rates of prostaglandin (PG) I(2) and PGE(2) were used as markers of biochemical responsiveness of SMCs to fluid shear stress. Both PGI(2) and PGE(2) production rates under 1 dyne/cm(2) shear stress were significantly elevated relative to static (no-flow) controls. The production rates, however, were approximately 10 times lower than observed when the same cells were plated on collagen-treated glass slides (2D model) and exposed to the same level of shear stress by use of a rotating disk apparatus. The results indicate that interstitial flow can affect SMC biology and that SMCs are more quiescent in 3D cultures than in 2D cultures. The 3D collagen gel model should be useful for future studies of interstitial flow effects on SMC function.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验