Günther B
Physiol Rev. 1975 Oct;55(4):659-99. doi: 10.1152/physrev.1975.55.4.659.
From this review we conclude the following: 1) The body weight of an organism is an adequate reference index for the correlation of morphological and physiological characteristics. In comparative physiology, body weight can be recommended as a unifying frame of reference, particularly if the ponderal scale includes several decades, in order to apply logarithmic scales for the variables involved. (See article). 2) The statistical analysis of the experimental data can be represented conveniently by means of the logarithmic equivalent of Huxley's allometric equation (y = a-Wb), which is the most simple and at the same time the most versatile mathematical expression for intra- or interspecies comparisons. The exponents (b) for the allometric equations can be predicted for all biological variables definable in terms of the MLT system of physics (M = mass, L = length, T = time) or of a four-dimensional system MLTt where t = temperature. 3) By means of dimensional analysis and the theory of biological similarity a range of similarity criteria can be established: a) mechanical or dynamic similarity, b) kinematic or biological similarity; and c) hydrodynamic or transport similarity. Most functions obey the so-called biological (kinematic) similarity, particularly when the concept of operational time is introduced into Lambert-Teissier's original theory. 4) A satisfactory correlation (r = 0.99) for 80 empirical allometric exponents (b) describing morphological and physiological characteristics of living beings was found. These results are discussed in relation to Rosen's optimality principles in biology. 5) Organisms should be considered as mixed regimes. This means that no single similarity criterion can predict the allometric exponent (b) of all functions that dimensionally belong to MLT or MLTt systems, despite the fact that in the great majority of cases kinematic similarity will satisfactorily predict the reduced exponent (b). Nevertheless, in some instances mechanical (dynamic) similarity must be applied, and in other circumstances hydrodynamic (transport) similarity. 6) Cellular or molecular levels are not in the domain of the present theory, since neither cell dimensions nor molecular processes (viz., blood viscosity, diffusion capacity) can be predicted by biological similarity criteria.
通过本综述,我们得出以下结论:1)生物体的体重是关联形态学和生理学特征的一个适当参考指标。在比较生理学中,体重可被推荐作为一个统一的参考框架,特别是当体重范围涵盖几十年时,以便对所涉及的变量应用对数尺度。(见文章)。2)实验数据的统计分析可以方便地用赫胥黎异速生长方程(y = a·W^b)的对数等价形式来表示,这是用于种内或种间比较的最简单且同时最通用的数学表达式。对于所有能用物理学的MLT系统(M = 质量,L = 长度,T = 时间)或四维系统MLTt(其中t = 温度)定义的生物学变量,异速生长方程的指数(b)都可以预测。3)通过量纲分析和生物相似性理论,可以建立一系列相似性准则:a)力学或动力学相似性,b)运动学或生物学相似性;以及c)流体动力学或传输相似性。大多数函数遵循所谓的生物(运动学)相似性,特别是当将操作时间的概念引入兰伯特 - 泰西埃的原始理论时。4)发现对于描述生物形态学和生理学特征的80个经验异速生长指数(b),存在令人满意的相关性(r = 0.99)。这些结果结合生物学中的罗森最优性原理进行了讨论。5)生物体应被视为混合体系。这意味着,尽管在绝大多数情况下运动学相似性能令人满意地预测约化指数(b),但没有单一的相似性准则能预测所有维度上属于MLT或MLTt系统的函数的异速生长指数(b)。然而,在某些情况下必须应用力学(动力学)相似性,而在其他情况下则应用流体动力学(传输)相似性。6)细胞或分子水平不在本理论的范畴内,因为细胞尺寸和分子过程(即血液粘度、扩散能力)都无法通过生物相似性准则来预测。