Suppr超能文献

对胆色素原合酶活性位点赖氨酸突变的机制性影响。

Mechanistic implications of mutations to the active site lysine of porphobilinogen synthase.

作者信息

Mitchell L W, Volin M, Martins J, Jaffe E K

机构信息

Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

出版信息

J Biol Chem. 2001 Jan 12;276(2):1538-44. doi: 10.1074/jbc.M008505200.

Abstract

Porphobilinogen synthase (PBGS) is a homo-octameric protein that catalyzes the complex asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). The only characterized intermediate in the PBGS-catalyzed reaction is a Schiff base that forms between the first ALA that binds and a conserved lysine, which in Escherichia coli PBGS is Lys-246 and in human PBGS is Lys-252. In this study, E. coli PBGS mutants K246H, K246M, K246W, K246N, and K246G and human PBGS mutant K252G were characterized. Alterations to this lysine result in a disabled but not totally inactive protein suggesting an alternate mechanism in which proximity and orientation are major catalytic devices. (13)C NMR studies of [3,5-(13)C]porphobilinogen bound at the active sites of the E. coli PBGS and the mutants show only minor chemical shift differences, i.e. environmental alterations. Mammalian PBGS is established to have four functional active sites, whereas the crystal structure of E. coli PBGS shows eight spatially distinct and structurally equivalent subunits. Biochemical data for E. coli PBGS have been interpreted to support both four and eight active sites. A unifying hypothesis is that formation of the Schiff base between this lysine and ALA triggers a conformational change that results in asymmetry. Product binding studies with wild-type E. coli PBGS and K246G demonstrate that both bind porphobilinogen at four per octamer although the latter cannot form the Schiff base from substrate. Thus, formation of the lysine to ALA Schiff base is not required to initiate the asymmetry that results in half-site reactivity.

摘要

胆色素原合酶(PBGS)是一种同源八聚体蛋白,催化两分子5-氨基乙酰丙酸(ALA)进行复杂的不对称缩合反应。PBGS催化反应中唯一已被表征的中间体是一种席夫碱,它在第一个结合的ALA与一个保守赖氨酸之间形成,在大肠杆菌PBGS中该赖氨酸是Lys-246,在人PBGS中是Lys-252。在本研究中,对大肠杆菌PBGS突变体K246H、K246M、K246W、K246N和K246G以及人PBGS突变体K252G进行了表征。该赖氨酸的改变导致蛋白功能丧失但并非完全失活,这表明存在一种替代机制,其中邻近性和取向是主要的催化手段。对结合在大肠杆菌PBGS及其突变体活性位点的[3,5-(13)C]胆色素原的(13)C NMR研究仅显示出微小的化学位移差异,即环境改变。已确定哺乳动物PBGS有四个功能活性位点,而大肠杆菌PBGS的晶体结构显示有八个空间上不同且结构等效的亚基。大肠杆菌PBGS的生化数据已被解释为支持四个和八个活性位点。一个统一的假说是,该赖氨酸与ALA之间席夫碱的形成引发了构象变化,从而导致不对称性。对野生型大肠杆菌PBGS和K246G的产物结合研究表明,两者均以每个八聚体四个的比例结合胆色素原,尽管后者不能从底物形成席夫碱。因此,赖氨酸与ALA席夫碱的形成并非启动导致半位点反应性的不对称性所必需的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验