Johnson K H
Yale School of Forestry and Environmental Studies, New Haven, Connecticut 06511, USA.
Biol Rev Camb Philos Soc. 2000 Aug;75(3):347-76. doi: 10.1017/s0006323100005508.
Complexity in the networks of interactions among and between the living and abiotic components forming ecosystems confounds the ability of ecologists to predict the economic consequences of perturbations such as species deletions in nature. Such uncertainty hampers prudent decision making about where and when to invest most intensively in species conservation programmes. Demystifying ecosystem responses to biodiversity alterations may be best achieved through the study of the interactions allowing biotic communities to compensate internally for population changes in terms of contributing to ecosystem function, or their intrinsic functional redundancy. Because individual organisms are the biologically discrete working components of ecosystems and because environmental changes are perceived at the scale of the individual, a mechanistic understanding of functional redundancy will hinge upon understanding how individuals' behaviours influence population dynamics in the complex community setting. Here, I use analytical and graphical modelling to construct a conceptual framework for predicting the conditions under which varying degrees of interspecific functional redundancy can be found in dynamic ecosystems. The framework is founded on principles related to food web successional theory, which provides some evolutionary insights for mechanistically linking functional roles of discrete, interacting organisms with the dynamics of ecosystems because energy is the currency both for ecological fitness and for food web commerce. Net productivity is considered the most contextually relevant ecosystem process variable because of its socioeconomic significance and because it ultimately subsumes all biological processes and interactions. Redundancy relative to productivity is suggested to manifest most directly as compensatory niche shifts among adaptive foragers in exploitation ecosystems, facilitating coexistence and enhancing ecosystem recovery after disturbances which alter species' relative abundances, such as extinctions. The framework further explicates how resource scarcity and environmental stochasticity may constitute 'ecosystem legacies' influencing the emergence of redundancy by shaping the background conditions for foraging behaviour evolution and, consequently, the prevalence of compensatory interactions. Because it generates experimentally testable predictions for a priori hypothesis testing about when and where varying degrees of functional redundancy are likely to be found in food webs, the framework may be useful for advancing toward the reliable knowledge of biodiversity and ecosystem function relations necessary for prudent prioritization of conservation programmes. The theory presented here introduces explanation of how increasing diversity can have a negative influence on ecosystem sustainability by altering the environment for biotic interactions and thereby changing functional compensability among biota--under particular conditions.
构成生态系统的生物与非生物成分之间以及内部的相互作用网络十分复杂,这使得生态学家难以预测诸如自然界中物种缺失等扰动所带来的经济后果。这种不确定性阻碍了人们就何时何地对物种保护计划进行最密集投资做出审慎决策。要揭开生态系统对生物多样性变化的响应之谜,或许最好的办法是研究生物群落如何通过有助于生态系统功能的内部补偿来应对种群变化,即研究其内在功能冗余。由于个体生物是生态系统中生物学上离散的工作单元,且环境变化是在个体层面被感知的,因此对功能冗余的机制性理解将取决于理解个体行为如何在复杂的群落环境中影响种群动态。在此,我运用分析和图形建模构建一个概念框架,以预测在动态生态系统中何种条件下能发现不同程度的种间功能冗余。该框架基于与食物网演替理论相关的原理,这为将离散、相互作用的生物的功能角色与生态系统动态进行机制性联系提供了一些进化见解,因为能量既是生态适应性的货币,也是食物网交易的货币。净生产力被视为最具背景相关性的生态系统过程变量,这是因为它具有社会经济意义,且最终涵盖了所有生物过程和相互作用。相对于生产力的冗余被认为最直接地表现为开发型生态系统中适应性觅食者之间的补偿性生态位转移,这有助于共存并增强干扰(如物种灭绝)改变物种相对丰度后生态系统的恢复能力。该框架进一步阐述了资源稀缺和环境随机性如何通过塑造觅食行为进化的背景条件,进而影响补偿性相互作用的普遍程度,从而构成影响冗余出现的“生态系统遗产”。由于该框架能为关于食物网中何时何地可能发现不同程度功能冗余的先验假设检验生成可通过实验验证的预测,所以它可能有助于推动我们获得关于生物多样性与生态系统功能关系的可靠知识,而这对于审慎地确定保护计划的优先顺序是必要的。这里提出的理论解释了在特定条件下,多样性增加如何通过改变生物相互作用的环境,进而改变生物群落间的功能补偿性,对生态系统可持续性产生负面影响。