Milne S C
Department of Mathematics, Ohio State University, 231 West 18th Avenue, Columbus, OH 43210.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15004-8. doi: 10.1073/pnas.93.26.15004.
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi's (1829) 4 and 8 squares identities to 4n(2) or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the eta-function identities in appendix I of Macdonald's work [Macdonald, I. G. (1972) Invent. Math. 15, 91-143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415-456] identities involving representing a positive integer by sums of 4n(2) or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C(l) nonterminating (6)phi(5) summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n(2) or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
在本文中,我们给出了两个无穷族的显式精确公式,它们分别将雅可比(1829 年)的 4 平方和 8 平方恒等式推广到 4n² 或 4n(n + 1) 平方,且不使用尖形式。当 n 为奇数时,我们的 24 平方恒等式给出了拉马努金 τ 函数 τ(n) 的一个不同公式。这些结果出现在雅可比椭圆函数、雅可比连分数、汉克尔或图兰行列式、傅里叶级数、兰伯特级数、容斥原理、行列式的拉普拉斯展开公式以及舒尔函数的背景下。在相同背景下,我们还得到了许多其他无穷族的恒等式,它们类似于麦克唐纳著作[麦克唐纳,I. G.(1972 年)《数学发明》15,91 - 143]附录 I 中的 η 函数恒等式。我们方法的一个特殊情况给出了两个猜想[卡茨,V. G. 和若木本,M.(1994 年)载于《数学进展》,编辑:布里林斯基,J.-L.,布里林斯基,R.,纪尧姆,V. 和卡茨,V.(伯克霍夫波士顿出版社,马萨诸塞州波士顿),第 123 卷,第 415 - 456 页]恒等式的证明,这两个恒等式分别涉及用 4n² 或 4n(n + 1) 个三角数之和表示一个正整数。我们的 16 平方和 24 平方恒等式最初是通过多个基本超几何级数、古斯塔夫森的 C(l) 非终止(6)φ(5) 求和定理以及安德鲁斯对雅可比 4 平方和 8 平方恒等式的基本超几何级数证明得到的。我们(在其他地方)已将对称和舒尔函数技术应用于这种原始方法,以分别证明对于 n² 或 n(n + 1) 平方存在类似的无穷族平方和恒等式。我们超过 8 平方的和恒等式与马修斯(1895 年)、格莱舍(1907 年)、拉马努金(1916 年)、莫德尔(1917 年、1919 年)、哈代(1918 年、1920 年)、卡茨和若木本以及许多其他人的公式不同。