Ernst W G, Maruyama S, Wallis S
Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9532-7. doi: 10.1073/pnas.94.18.9532.
Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 +/- 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over approximately 20 million years, rapid ( approximately 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material-otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.
保存形成于90 - 125千米深处的超高压(UHP)矿物需要特殊条件。我们的俯冲模型涉及嵌入冷的、主要由大洋地壳覆盖的岩石圈中的一个大陆地壳凸起(宽250±150千米,长90 - 125千米)的底流;随着越来越多的微大陆物质进入俯冲带,通过板片拆离使高密度大洋岩石圈的前端部分损失;由浮力驱动使一个薄的(2 - 15千米厚)、低密度切片返回中地壳水平;最后,超高压地体隆升、背向褶皱、正断层作用和暴露。持续约2000万年,夹在较冷的上盘板块和冷却下沉的岩石圈之间的细长超高压硅铝质片麻岩快速(约5毫米/年)折返,使得热量能沿其上下表面散失。大多数超高压杂岩体位于克拉通内部,这反映了其间大洋盆地的消耗以及一个硅铝质海角进入俯冲带。与被置换的地幔物质相比,超高压变质地体主要由转变后的但相对低密度的大陆地壳组成,否则这样的杂岩体无法返回浅部深度。相对稀少的变质玄武岩、变质辉长岩和变质燧石质岩性保留了超高压条件下特征相的痕迹,因为它们块状、几乎不透流体且近乎无水。相比之下,富含水的石英长石质、片麻状/片状、渗透性更强的变质沉积岩和变质花岗岩单元已经充分发生了逆反应,所以柯石英和其他超高压硅酸盐极其罕见。由于初始存在生物成因碳,且其转化速率特别缓慢,超高压副片麻岩中保存了最丰富的地壳钻石。