Shapiro D A, Kristiansen K, Kroeze W K, Roth B L
Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio, USA.
Mol Pharmacol. 2000 Nov;58(5):877-86. doi: 10.1124/mol.58.5.877.
Site-directed mutagenesis and molecular modeling were used to investigate the molecular interactions involved in ligand binding to, and activation of, the rat 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin (5-HT) receptor. Based on previous modeling studies utilizing molecular mechanics energy calculations and molecular dynamics simulations, four sites (S239[5.43], F240[5.44], F243[5.47], and F244[5.48]) in transmembrane region V were selected, each predicted to contribute to agonist and/or antagonist binding. The F243A mutation increased the affinity of (+/-)4-iodo-2, 5-dimethoxyphenylisopropylamine, decreased the binding of alpha-methyl-5HT, N-omega-methyl-5HT, ketanserin, ritanserin, and spiperone and had no effect on the binding of 5-HT and 5-methyl-N, N-dimethyltryptamine. The F240A mutant had no effect on the binding of any of the ligands tested, whereas F244A caused an agonist-specific decrease in binding affinity (3- to 10-fold). S239A caused a 6- to 13-fold decrease in tryptamine-binding affinity and a 5-fold increase in affinity of 4-iodo-2, 5-dimethoxyphenylisopropylamine. A subset of the agonists used in binding studies were used to determine the efficacies and potencies of these mutants to activate phosphoinositide hydrolysis. The F243A and F244A mutations reduced agonist stimulated phosphoinositide hydrolysis, whereas the S239A and F240A mutations had no effect. There was little correlation between agonist binding and second messenger production. Furthermore, molecular dynamics simulations, considering these data, produced ligand-bound structures utilizing substantially different bonding interactions even among structurally similar ligands (differing by as little as one methyl group). Taken together, these results suggest that relatively minor changes in either receptor or ligand structure can produce drastic and unpredictable changes in both binding interactions and 5-HT(2A) receptor activation. Thus, our finding may have major implications for the future and feasibility of receptor structure-based drug design.
采用定点诱变和分子模拟方法,研究了配体与大鼠5-羟色胺(2A)(5-HT(2A))5-羟色胺(5-HT)受体结合及激活过程中涉及的分子相互作用。基于先前利用分子力学能量计算和分子动力学模拟的建模研究,选择了跨膜区V中的四个位点(S239[5.43]、F240[5.44]、F243[5.47]和F244[5.48]),预计每个位点都有助于激动剂和/或拮抗剂的结合。F243A突变增加了(±)4-碘-2,5-二甲氧基苯基异丙胺的亲和力,降低了α-甲基-5HT、N-ω-甲基-5HT、酮色林、利坦色林和螺哌隆的结合,对5-HT和5-甲基-N,N-二甲基色胺的结合没有影响。F240A突变体对所测试的任何配体的结合均无影响,而F244A导致激动剂特异性结合亲和力降低(3至10倍)。S239A导致色胺结合亲和力降低6至13倍,4-碘-2,5-二甲氧基苯基异丙胺的亲和力增加5倍。结合研究中使用的一部分激动剂用于确定这些突变体激活磷酸肌醇水解的效能和效力。F243A和F244A突变降低了激动剂刺激的磷酸肌醇水解,而S239A和F240A突变没有影响。激动剂结合与第二信使产生之间几乎没有相关性。此外,考虑到这些数据的分子动力学模拟,即使在结构相似的配体(相差仅一个甲基)之间,利用基本不同的键合相互作用生成了配体结合结构。综上所述,这些结果表明,受体或配体结构中相对较小的变化都可能在结合相互作用和5-HT(2A)受体激活方面产生剧烈且不可预测的变化。因此,我们的发现可能对基于受体结构的药物设计的未来和可行性具有重大意义。