Suppr超能文献

基于长骨周长的性别评估。

Sex assessment on the basis of long bone circumference.

作者信息

Safont S, Malgosa A, Subirà M E

机构信息

Unitat d'Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra Barcelona, Spain.

出版信息

Am J Phys Anthropol. 2000 Nov;113(3):317-28. doi: 10.1002/1096-8644(200011)113:3<317::AID-AJPA4>3.0.CO;2-J.

Abstract

Discriminant functions have long been used to classify individuals into groups according to the dimensions of their bones. Although lengths, widths, and diameters have been extensively used, the circumferences have not been adequately validated. In this work, the importance that the circumferences of long bones can have in assigning the sex of ancient human remains is demonstrated. The functions produced by using just one circumference achieved accuracies higher than 80%, and circumference at the radial tuberosity of the radius is able to classify 92.8% of skeletons from the Late Roman site of Mas Rimbau/Mas Mallol (Spain). When functions are produced by using more than one circumference, they can achieve the uppermost classification attained in this sample. The functions also showed that the arm circumference functions are more useful than those of the leg, probably because male individuals of the population had greater mechanical stress than did females. The classification percentages, as well as other statistical values for the functions, demonstrated the great ability of long bone circumferences in helping to classify the sex of individuals of other sites of the Mediterranean area besides the ones examined in this study.

摘要

判别函数长期以来一直被用于根据骨骼尺寸将个体分类到不同组中。虽然长度、宽度和直径已被广泛使用,但周长尚未得到充分验证。在这项研究中,证明了长骨周长在确定古代人类遗骸性别方面的重要性。仅使用一个周长得出的函数准确率高于80%,桡骨结节处的周长能够对来自西班牙马斯林鲍/马斯马洛晚期罗马遗址的92.8%的骨骼进行性别分类。当使用多个周长得出函数时,它们能达到该样本中的最高分类准确率。这些函数还表明,手臂周长函数比腿部周长函数更有用,这可能是因为该人群中的男性个体比女性承受更大的机械应力。分类百分比以及函数的其他统计值表明,除了本研究中所考察的遗址外,长骨周长在帮助对地中海地区其他遗址个体进行性别分类方面具有很强的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验