Alexander TJ, Kivshar YS, Buryak AV, Sammut RA
Optical Sciences Center, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):2042-9. doi: 10.1103/physreve.61.2042.
We analyze two-component spatial optical vortex solitons supported by parametric wave mixing processes in a nonlinear bulk medium. We study two distinct cases of such localized waves, namely, parametric vortex solitons due to phase-matched second-harmonic generation in an optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a "halo-vortex," consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a "ring-vortex" soliton which is a vortex in a harmonic field that guides a ring-like localized mode of the fundamental-frequency field.
我们分析了非线性体介质中由参量波混频过程支持的双分量空间光学涡旋孤子。我们研究了这类局域波的两种不同情况,即:在具有竞争二次和三次非线性响应的光学介质中,由相位匹配二次谐波产生导致的参量涡旋孤子,以及在三次介质中存在三次谐波产生时的涡旋孤子。我们通过解析和数值方法得到了双分量涡旋孤子的结构,并研究了其平面波背景的调制不稳定性。特别地,我们预测并详细分析了新型涡旋孤子,一种“晕涡”,它由一个双分量涡旋核及其谐波场的亮环包围组成;还有一种“环涡”孤子,它是谐波场中的一个涡旋,引导基频场的环状局域模。