Suppr超能文献

水的介电函数及其在范德华力中的应用。

The Dielectric Function for Water and Its Application to van der Waals Forces.

作者信息

Dagastine RR, Prieve DC, White LR

机构信息

Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213

出版信息

J Colloid Interface Sci. 2000 Nov 15;231(2):351-358. doi: 10.1006/jcis.2000.7164.

Abstract

The dielectric response, varepsilon(ixi), for water (which is required in Lifshitz theory to calculate the van der Waals interactions in aqueous systems) is commonly constructed, in the absence of complete spectral data, by fitting a damped-harmonic-oscillator model to absorption data. Two sets of parameters for the model have been developed corresponding to different constraints: Parsegian and Weiss (J. Colloid Interface Sci., 1981, 81, 285) and Roth and Lenhoff (J. Colloid Interface Sci., 1996, 179, 637). These different representations of the dielectric response lead to significant differences in the van der Waals force calculated from Lifshitz theory. In this work, more recent and complete spectral data for water were compiled from the literature and direct integration of the Kramers-Kronig relations was used to construct a new varepsilon(ixi) for water at 298 degrees K. This approach also allows a number of different types of spectral measurements (such as infrared spectroscopy, microwave resonance techniques, and x-ray inelastic scattering) in the compilation of absorption data over a large frequency range (on the order of 8 to 10 decades in frequency). A Kramers-Kronig integration was employed to construct the real and imaginary parts of varepsilon(omega), varepsilon'(omega), and varepsilon"(omega) for water from the different spectral measurements before calculation of varepsilon(ixi) from its integral definition. The resulting new varepsilon(ixi) is intermediate between the Parsegian-Weiss and Roth-Lenhoff representations of varepsilon(ixi), does not use a model, and treats the conversion of absorption data as rigorously as possible. We believe the varepsilon(ixi) from the present work is the most reliable construction for use in van der Waals force calculations using Lifshitz theory. The extension of the varepsilon(ixi) construction to other temperatures is also discussed. Copyright 2000 Academic Press.

摘要

水的介电响应ε(ω)(在 Lifshitz 理论中计算水体系中的范德华相互作用时需要用到),在缺乏完整光谱数据的情况下,通常是通过将阻尼谐振子模型拟合到吸收数据来构建的。针对不同的约束条件,已开发出该模型的两组参数:Parsegian 和 Weiss(《胶体与界面科学杂志》,1981 年,81 卷,285 页)以及 Roth 和 Lenhoff(《胶体与界面科学杂志》,1996 年,179 卷,637 页)。这些介电响应的不同表示形式导致根据 Lifshitz 理论计算出的范德华力存在显著差异。在这项工作中,从文献中收集了水的更新且完整的光谱数据,并使用 Kramers-Kronig 关系的直接积分来构建 298 K 时水的新ε(ω)。这种方法还允许在大频率范围(频率跨度约为 8 到 10 个数量级)的吸收数据汇编中使用多种不同类型的光谱测量(如红外光谱、微波共振技术和 X 射线非弹性散射)。在根据其积分定义计算ε(ω)之前,采用 Kramers-Kronig 积分从不同的光谱测量构建水的ε(ω)的实部和虚部ε′(ω)和ε″(ω)。所得的新ε(ω)介于 Parsegian-Weiss 和 Roth-Lenhoff 的ε(ω)表示形式之间,不使用模型,并尽可能严格地处理吸收数据的转换。我们认为本工作中的ε(ω)是用于使用 Lifshitz 理论进行范德华力计算的最可靠构建。还讨论了将ε(ω)构建扩展到其他温度的情况。版权所有 2000 年学术出版社。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验