School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
Adv Colloid Interface Sci. 2017 Dec;250:54-63. doi: 10.1016/j.cis.2017.10.004. Epub 2017 Oct 31.
Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems.
范德华力是分子间、胶体和表面力的重要组成部分,控制着许多现象和过程。最新的例子包括疏水性胶体在环境(未除气)水中与界面的胶体相互作用,其中溶解气体和纳米气泡被证明显著影响范德华吸引力。利用 Lifshitz 理论对水相体系中的范德华力进行高级计算需要可靠的水介电谱数据。本文综述了计算胶体和表面范德华力的水介电谱的可用预测。具体来说,对微波、红外和紫外区域液态水复介电常数实部和虚部的可用实验数据以及水谱的各种相应预测进行了批判性回顾。紫外区域的数据至关重要,但可用的预测仍然基于 1974 年获得的过时数据(仅频率高达 25.5eV)。我们还回顾和分析了 2000 年(频率高达 50eV)和 2015 年(频率高达 100eV)获得的紫外区域实验数据。1974 年和 2000 年的数据需要外推到更高的频率,以计算范德华力,但仍然不准确。我们的分析表明,最新的 2015 年数据不需要外推,可以可靠地计算范德华力。最新的水介电谱给出了(非滞后)Hamaker 常数,A=5.20×10J,用于液态水的泡沫膜。本综述提供了最新和最可靠的水介电谱,用于计算水相体系中的范德华力。