Suppr超能文献

在 Fischer 大鼠甲状腺上皮细胞中研究 R 结构域磷酸丝氨酸对囊性纤维化跨膜传导调节因子(CFTR)功能的作用。

Contribution of R domain phosphoserines to the function of CFTR studied in Fischer rat thyroid epithelia.

作者信息

Baldursson O, Berger H A, Welsh M J

机构信息

Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2000 Nov;279(5):L835-41. doi: 10.1152/ajplung.2000.279.5.L835.

Abstract

The regulatory domain of cystic fibrosis transmembrane conductance regulator (CFTR) regulates channel activity when several serines are phosphorylated by cAMP-dependent protein kinase. To further define the functional role of individual phosphoserines, we studied CFTR containing previously studied and new serine to alanine mutations. We expressed these constructs in Fischer rat thyroid epithelia and measured transepithelial Cl(-) current. Mutation of four in vivo phosphorylation sites, Ser(660), Ser(737), Ser(795), and Ser(813) (S-Quad-A), substantially decreased cAMP-stimulated current, suggesting that these four sites account for most of the phosphorylation-dependent response. Mutation of either Ser(660) or Ser(813) alone significantly decreased current, indicating that these residues play a key role in phosphorylation-dependent stimulation. However, neither Ser(660) nor Ser(813) alone increased current to wild-type levels; both residues were required. Changing Ser(737) to alanine increased current above wild-type levels, suggesting that phosphorylation of Ser(737) may inhibit current in wild-type CFTR. These data help define the functional role of regulatory domain phosphoserines and suggest interactions between individual phosphoserines.

摘要

当几个丝氨酸被环磷酸腺苷依赖性蛋白激酶磷酸化时,囊性纤维化跨膜传导调节因子(CFTR)的调节结构域会调节通道活性。为了进一步确定单个磷酸化丝氨酸的功能作用,我们研究了含有先前研究过的丝氨酸到丙氨酸突变以及新突变的CFTR。我们在 Fischer 大鼠甲状腺上皮细胞中表达这些构建体,并测量跨上皮Cl(-)电流。四个体内磷酸化位点Ser(660)、Ser(737)、Ser(795)和Ser(813)(S-Quad-A)的突变显著降低了环磷酸腺苷刺激的电流,表明这四个位点占了大部分磷酸化依赖性反应。单独突变Ser(660)或Ser(813)会显著降低电流,表明这些残基在磷酸化依赖性刺激中起关键作用。然而,单独的Ser(660)或Ser(813)都不会使电流增加到野生型水平;两个残基都是必需的。将Ser(737)突变为丙氨酸会使电流增加到高于野生型水平,这表明Ser(737)的磷酸化可能会抑制野生型CFTR中的电流。这些数据有助于确定调节结构域磷酸化丝氨酸的功能作用,并表明单个磷酸化丝氨酸之间存在相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验