Ma Tonghui, Vetrivel L, Yang Hong, Pedemonte Nicoletta, Zegarra-Moran Olga, Galietta Luis J V, Verkman A S
Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA.
J Biol Chem. 2002 Oct 4;277(40):37235-41. doi: 10.1074/jbc.M205932200. Epub 2002 Aug 2.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein that reduce cAMP-stimulated Cl(-) conductance in airway and other epithelia. The purpose of this investigation was to identify new classes of potent CFTR activators. A collection of 60,000 diverse drug-like compounds was screened at 10 microm together with a low concentration of forskolin (0.5 microm) in Fisher rat thyroid epithelial cells co-expressing human CFTR and a green fluorescent protein-based Cl(-) sensor. Primary screening yielded 57 strong activators (greater activity than reference compound apigenin), most of which were unrelated in chemical structure to known CFTR activators, and 284 weaker activators. Secondary analysis of the strong activators included analysis of CFTR specificity, forskolin requirement, transepithelial short-circuit current, activation kinetics, dose response, toxicity, and activation mechanism. Three compounds, the most potent being a dihydroisoquinoline, activated CFTR by elevating cellular cAMP, probably by phosphodiesterase inhibition. Fourteen compounds activated CFTR without cAMP elevation or phosphatase inhibition, suggesting direct CFTR interaction. The most potent compounds had tetrahydrocarbazol, hydroxycoumarin, and thiazolidine core structures. These compounds induced CFTR Cl(-) currents rapidly (<5 min) with K(d) down to 200 nm and were CFTR-selective, reversible, and nontoxic. Several compounds, the most potent being a trifluoromethylphenylbenzamine, activated the CF-causing mutant G551D, but with much weaker affinity (K(d) > 10 microm). When added for 10 min, none of the compounds activated DeltaPhe(508)-CFTR in transfected cells grown at 37 degrees C (with DeltaPhe(508)-CFTR trapped in the endoplasmic reticulum). However, after correction of trafficking by 48 h of growth at 27 degrees C, tetrahydrocarbazol and N-phenyltriazine derivatives strongly stimulated Cl(-) conductance with K(d) < 1 microm. The new activators identified here may be useful in defining molecular mechanisms of CFTR activation and as lead compounds in CF drug development.
囊性纤维化(CF)是由囊性纤维化跨膜传导调节因子(CFTR)蛋白的突变引起的,该突变会降低气道和其他上皮细胞中cAMP刺激的Cl⁻传导。本研究的目的是鉴定新型强效CFTR激活剂。在共表达人CFTR和基于绿色荧光蛋白的Cl⁻传感器的Fisher大鼠甲状腺上皮细胞中,以10微摩尔的浓度对60,000种不同的类药物化合物与低浓度的福斯可林(0.5微摩尔)进行筛选。初步筛选产生了57种强效激活剂(活性高于参考化合物芹菜素),其中大多数在化学结构上与已知的CFTR激活剂无关,以及284种较弱的激活剂。对强效激活剂的二次分析包括CFTR特异性分析、福斯可林需求分析、跨上皮短路电流分析、激活动力学分析、剂量反应分析、毒性分析和激活机制分析。三种化合物,其中最有效的是二氢异喹啉,通过升高细胞内cAMP来激活CFTR,可能是通过抑制磷酸二酯酶。十四种化合物在不升高cAMP或不抑制磷酸酶的情况下激活CFTR,表明是直接与CFTR相互作用。最有效的化合物具有四氢咔唑、羟基香豆素和噻唑烷核心结构。这些化合物能迅速(<5分钟)诱导CFTR Cl⁻电流,解离常数(K(d))低至200纳米,且具有CFTR选择性、可逆性和无毒性。几种化合物,其中最有效的是三氟甲基苯基苄胺,能激活导致CF的突变体G551D,但亲和力较弱(K(d)>10微摩尔)。当添加10分钟时,在37℃培养的转染细胞中,没有一种化合物能激活缺失苯丙氨酸508(DeltaPhe(508))的CFTR(DeltaPhe(508)-CFTR被困在内质网中)。然而,在27℃生长48小时校正转运后,四氢咔唑和N-苯基三嗪衍生物能强烈刺激Cl⁻传导,K(d)<1微摩尔。此处鉴定出的新型激活剂可能有助于确定CFTR激活的分子机制,并作为CF药物开发的先导化合物。