Greenberg A W, Brunk D K, Hammer D A
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Biophys J. 2000 Nov;79(5):2391-402. doi: 10.1016/S0006-3495(00)76484-8.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.
黏附分子选择素家族介导中性粒细胞与受刺激内皮细胞的黏附与滚动。炎症反应的这一步骤是牢固黏附与渗出的先决条件。我们曾报道,包被唾液酸化路易斯(x)(sLe(x))的微球可与E-选择素和P-选择素底物特异性相互作用并滚动(布伦克等人,1996年;罗杰斯等人,2000年)。本文将无细胞系统的应用扩展至研究流动状态下L-选择素与sLe(x)之间的相互作用。我们发现,sLe(x)微球可与L-选择素底物特异性相互作用并滚动。滚动速度随壁面剪应力增加而增大,随L-选择素密度增加而减小。滚动速度较快,介于25至225微米/秒之间,这是L-选择素相互作用的典型特征。滚动速度的变异性通过滚动速度的方差来量化,与滚动速度呈线性比例关系。滚动通量随壁面剪应力和L-选择素位点密度而变化。在L-选择素密度为800个位点/微米²时,包被sLe(x)的微球的滚动通量在剪应力为0.7达因/厘米²时出现明显最大值。这种在选择素上维持和促进滚动相互作用需要剪应力高于阈值的行为,被称为剪应力阈值效应。我们发现,该效应的幅度在L-选择素密度为800个位点/微米²时最大,并随L-选择素位点密度增加而逐渐减小。我们的研究首次在无细胞系统中揭示了剪应力阈值效应,并且首次在重构系统中表明了剪应力阈值效应对L-选择素位点密度的依赖性。我们在无细胞系统中重现剪应力阈值效应的能力有力地表明,该效应的起源在于L-选择素与其配体相互作用中的物理化学过程,并且在很大程度上排除了诸如可变形性或拓扑结构等细胞特征作为其成因。